1. См. рис.1. Найти отрезок КР. КР = МН – МК – РН.
Т.к. МН – средняя линия трапеции, то МК и РН – средние линии треугольников АВС и ДВС. У этих треугольников общее основание ВС. Следовательно МК = РН = ВС/2 = 8/2 = 4 см. Т.к. МН – средняя линия трапеции , то МН = (АД+ВС)/2 = (16 + 8)/2 = 12 см. Таким образом, КР = 12 -4 -4 = 4 см.
2. См. рис.2. Синие линии нужны для объяснения принципа построения. При построении требуемой прямой их, естественно, не будет.
Внутри угла А поставлена точка М. Через эту точку проведена прямая, пересекающая лучи «а» и «е» в точках С и В соответственно. Если эта линия будет проведена правильно, то в получившемся треугольнике АСВ МА будет медианой, поскольку должно выполниться условие СМ = МВ. Медиана делит площадь треугольника пополам. Т.е. площадь треугольника АВМ должна равняться площади треугольника АМС. Значит, площадь треугольника АВС должна равняться двум площадям треугольника АВМ. Эти треугольники (АВС и АВМ) имеют общее основание АВ. Отсюда следует, что высота РС треугольника АВС должна быть в два раза больше высоты МК треугольника АВМ. Вот это обстоятельство и необходимо использовать при построении. Теперь забыли про синие линии. Их нет.
Из точки М опустим перпендикуляр (МК) на любой из лучей угла, например, на луч «е». Затем проведем прямую параллельно лучу «е» на расстоянии СР = 2МК. Пересечение этой прямой с лучом «а» даст точку С. Проведя прямую через точки М и С построим требуемую линию.
3. См. рис. 3. Требуемое условие будет выполняться, если НК будет параллельна АС. Опять же синяя линия для объяснения принципа. Если НК параллельна АС то треугольники АВД и НВЕ подобны. Так же подобны и треугольники СДВ и КЕВ. Для первой пары подобных треугольников ВД/АД = ВЕ/НЕ. Для второй пары ВД/СД = ВЕ/ЕК. Из этих двух соотношений вытекает, что АД/ДС = НЕ/ЕК. А поскольку АД = ДС, то и НЕ = ЕК. Таким образом, что бы выполнилось требуемое условие НК должен быть параллелен АС.
Вся сложность - сосчитать площадь трапеции. Эта трапеция может быть разрезана на два Пифагоровых треугольника и параллелограмм, и у всех будет общая (одна и та же) высота, равная высоте трапеции.
Если взять прямоугольный треугольник со сторонами (8, 15, 17) и приставить к нему другой прямоугольный треугольник - со сторонами (15, 20, 25), так, чтобы катеты 15 совпали, а катеты 8 и 20 были бы продолжением друг друга, то получится НЕпрямоугольный треугольник со сторонами (17, 25, 28), у которого высота к стороне 25, САМО СОБОЙ, равна 15.
Теперь надо продлить сторону 28 этого треугольника за вершину, общую для сторон 25 и 28, на 16, и из этой точки провести прямую II стороне 25, и из вершины (треугольника), общей для сторон 17 и 25, провести прямую II стороне 28. То есть - "пристроить" к треугольнику (17, 25, 28) параллелограмм со сторонами 16 и 25 и высотой - тоже 15 :).
Поскольку 28 + 16 = 44, то получилась заданная в задаче трепеция. У которой высота определилась сама собой - она равна 15.
Отсюда площадь трапеции 15*(44 + 16)/2 = 450,
А объем призмы 450*5 = 2250
Конечно, есть тупые сосчитать площадь трапеции по каким-то формулам - например, отрезав от трапеции треугольник (17,25,28) (это делается линией, параллельной боковой стороне 25, через вершину, общую для боковой стороны 17 и основания 16), сосчитать его площадь по формуле Герона (получится 210), и отсюда найти высоту (к стороне 28) - она будет 15, само собой.. Есть и формула, аналогичная формуле Герона, сразу для четырехугольников... если не лень - можете все это сделать самостоятельно. ответ будет тот же.
0,5*16*10=80/см²/
Формула, которую использовал в этой задаче .. площадь ромба равна половине произиведения диагоналей