Решить ответ должен быть развернутым дан треугольник авс, к∈ав, м∈вс причём отрезок км параллельный ас. площадь треугольника квм равна 9 см², вм = 6 см, мс = 2 см. найдите площадь треугольника авс
1)Окружность вписана в треугольник, если она касается всех его сторон. Расстояние от центра вписанной окружности до каждой из сторон треугольника равно радиусу этой окружности. Центром вписанной в треугольник окружности является точка пересечения биссектрис треугольника. От этой точки нужно провести перпендикуляр к любой стороне и это расстояние будет радиусом вписанной в треугольник окружности. 2) Окружность называется описанной вокруг треугольника, когда все его вершины лежат на окружности. Центром описанной окружности является точка пересечения срединных перпендикуляров к сторонам треугольника. Радиусом такой окружности будет расстояние от этого центра до вершин треугольника. 3) Вневписанная окружность — окружность, касающаяся одной стороны треугольника и продолжения двух других его сторон.Центр вневписанной окружности лежит на пересечении биссектрисы одного внутреннего угла и биссектрис внешних углов при двух других вершинах. Радиусом ее будет отрезок перпендикуляра, проведенного из центра окружности к стороне треугольника или к ее продолжению.Вневписанных окружностей у треугольника может быть 3 - к каждой стороне.
Дан ромб АВСD. Точка О - точка пересечения его диагоналей. Точка Р - точка пересечения перпендикуляра ВН (высоты ромба) и большей диагонали АС. В ромбе диагонали взаимно перпендикулярны и точкой пересечения делятся пополам. Большая диагональ ромба равна сумме данных нам отрезков: 3,5+12,5=16см. Половина ее равна 8см. В прямоугольном треугольнике РВС (<PBC=90°, дано) ВО - высота из прямого угла и по свойствам этой высоты равна ВО=√(РО*ОС). ОС=8 (половина диагонали), РО=АО-АР=8-3,5=4,5. Тогда ВО=√(4,5*8)=√(9*4)=6см. ВО - это половина меньшей диагонали. Значит меньшая диагональ равна 12см. Сторона ромба АВ найдется из прямоугольного треугольника АОВ по Пифагору: АВ=√(АО²+ВО²)=√(64+36)=10см. ответ: сторона ромба равна 10см, его меньшая диагональ равна 12см.
k = 6:8=3:
S(ABC)=16