Есть аксиома такая, если прямая параллельна одной из двух параллельных прямых, тогда она параллельна и второй.
Теперь, если прямые не пересекаются, то они параллельны. Но нам известно, что прямая пересекает одну из двух параллельных прямых, соответственно, она не может быть параллельной (не пересекаться) со второй. Это следствие вытекает из аксиомы. Если бы она не пересекала вторую, значит и к первой была бы параллельна.
Примечание. Все вышесказанное справедливо для прямых относящихся (принадлежащих) одной плоскости.
СОВЕРШЕННО ДРУГАЯ задача :) Дана окружность, в ней из одной точки проведены две хорды под углом 60°, их длины 11 и 13, надо найти длину окружности. По теореме косинусов легко сосчитать, что третья сторона (в квадрате) вписанного треугольника, сторонами которого являются эти хорды, равна 11^2 + 13^2 - 2*11*13*(1/2) = 147 = 49*3; то есть третья сторона равна 7√3; По теореме синусов 7√3 = 2Rsin(60°) = R√3; то есть R = 7; Длина окружности с таким радиусом равна 14π; ТЕПЕРЬ можно перейти к ЭТОЙ задаче и сразу написать ответ 14π; (А почему? :) )
1. В любой прямой призме проекция диагонали призмы на ее основание - диагональ основания. Следовательно, сечение, проходящее через диагональ призмы и её проекцию на основание - это прямоугольник. 2. Диагональное сечение призмы - прямоугольник ВВ1D1D. АА1=AD=2√3. Значит высота призмы равна 2√3. Диагональ призмы найдем по Пифагору: BD=√(AD²+AB²). АВ=DC (противоположные стороны основания). BD=√(12+25) = BD=√37. Площадь сечения равна S=BD*BB1 =√37*2√3 =2√111. 3. Проведем через сторону ВС сечение ВСН, перпендикулярное ребру АА1.Тогда ВН и СН - высоты боковых граней АА1В1В и АА1С1С соответственно и зная площади этих граней, найдем эти высоты. ВН=Saa1b1b/AA1 = 80/10=8см. СН=Scaa1c1/AA1 = 40/10=4см. По теореме косинусов найдем сторону ВС: ВС=√64+16-2*32*(-1/2) = √112 = 4√7. Площадь боковой поверхности наклонной призмы равна произведению периметра перпендикулярного сечения на длину бокового ребра. Периметр сечения у нас равен Рbch=4+8+4√7=(12+4√7)см. Sбок=(12+4√7)*10= 40(3+√7)см².
Теперь, если прямые не пересекаются, то они параллельны. Но нам известно, что прямая пересекает одну из двух параллельных прямых, соответственно, она не может быть параллельной (не пересекаться) со второй. Это следствие вытекает из аксиомы. Если бы она не пересекала вторую, значит и к первой была бы параллельна.
Примечание. Все вышесказанное справедливо для прямых относящихся (принадлежащих) одной плоскости.