Двугранным углом называется фигура, образованная двумя полуплоскостями с общей ограничивающей их прямой. Полуплоскости называются гранями , а ограничивающая их прямая - ребром двугранного угла Линейный угол двугранного угла - угол, образованный двумя плупрямыми, по которым плоскость, перпендикулярная ребру двугранного угла пересекает его грани по двум полупрямым Мера двугранного угла не зависит от выбора линейного угла . Трехгранным уголм (abc) называется фигура, составленная из 3 плоских углов (ab),(bc),(ac). Эти углы называются гранями трехгранного угла, а их стороны - ребрами . Общая вершина плоских углов называется вершиной трехгранного угла. Двугранные углы, образованные гранями трехгранного угла, называются дву гранными углами трехгранного угла . Аналогично определяется понятие многогранного угла (A1A2A3...An) - как фигуры, составленной из плоских углов (A1A2),(A2A3)...(AnA1). Многогранником называется тело, поверхность которо го состоих из конечного числа плоских многоугольни ков. Многогранник называется выпуклым , если он расположен по одну сторону плоскости каждого плоского многоугольника на его пов-ти. Общая часть такой плоскости и пов-ти выпуклого многогранника называется гранью . Стороны граней называются ребрами многогранника, а вершины - вершинами многогранника 2Призмой называется многогранник, который состоит из 2х плоских многоугольников, совмещаемых парал. переносом, и всех отрезков, соед. соотв. точки этих многоугольников. Основания призмы равны т.к. пар. пер. = движ. Многогранники называются основаниями призмы, а отр езки, соед. соотв. вершины - боковыми ребрами призмы . У призмы основания лежат в || плоскостях. Боковые ребра || и =. Боковая пов-ть сост. из параллелограммов . Высота призмы - расстояние, между полск. ее основ. Диагональ - отрезок, соед. 2 верш. не принадл 1 гр Диагональное сечение - сечение плоск. кот. прох. через боковых ребра, не принад. 1 грани. У прямой призмы - боков. ребра + основ. (наклонн.) Прямая призма - правильная , если ее основ, являют. правильными многоугольниками. Площадью боковой пов-ти призмы назыв. сумму площад боковых граней. Полная поверхность призмы = сумме боковой пов-ти и площадей основания. n - грани, диаг=n-3/(n-3)n (на одн./всего)
1. сначала рисуем основание и от одного из его концов, с циркуля, в сторону направления второй стороны, рисуем полукруг, равный по радиусу этой известной стороне. 2. Затем с циркуля с двух концов основания восстанавливаем перпендикуляры к самому основанию (как это делать Вы знаете). 3. С линейки отмеряем известную высоту на обоих перпендикулярах, начиная от основания. 4 Соединяем вершины высот прямой линией с линейки. Полученная линия параллельна основанию. 5. Место пересечения этой линии и полуокружности - это вершина нужного треугольника. Соединим её с концами основания. 6. С циркуля нарисуем второй полукруг к вершине от другого конца основания так, чтобы оба полукруга пересекались сверху и снизу. Соединим точки их пересечения. Получится высота треугольника.
Отрицательное: чрезмерное внесение удобрений в почву, разрушение почвенного покрова при добыче полезных ископаемых (образуются огромные карьеры).
Положительные: укрепление склонов оврага посадкой деревьев, поперечная вспашка на склонах оврагов, чтобы не было размыва водой при таянии снега и во время ливневых дождей, рекультивация земли ( восстановление земли после добычи полезных исколпаемых - карьеры засыпаются и производится высадка зеленых насаждений или же на местах карьеров создаются искусственные водоемы).