Может, решение громоздкое получилось, но другое как-то не придумалось Через подобные треугольники и формулу хорды. Из точки М опускаем перпендикуляр на сторону АС, точку пересечения обозначим через Р. Треугольник АМР подобен треугольнику АВС, откуда АР/АС=АМ/АВ=9/25. Отсюда находим АР=27/25 см. Теперь обозначаем через О середину стороны АС (т. е. центр окружности) и рассматриваем треугольник ОМР с прямым углом Р. Находим для этого треугольника угол О через его косинус: ОР=АО-АР=ОМ*cosO, отсюда cosO=7/25. Теперь найдём хорду АМ, по формуле хорды АМ=2*ОМ*sin(O/2). По формулам приведения sin(O/2)=sqrt((1-cosO)/2)=3/5, поэтому получаем АМ=1,8 см. По пропорции АМ/АВ=9/25 получаем АВ=5 см. По теореме Пифагора ВС=4 см, тогда искомая площадь треугольника равна АС*ВС/2=6 см кв.
Дано: АВСD - прямоугольник, Р авсd = 44 сантиметра, АВ = ВС + 2 сантиметров, Найти площадь S abcd - ? Решение: 1) Рассмотрим прямоугольник АВСD. Пусть длины сторон ВС = АD = х сантиметров, тогда длины сторон АВ = СD = х + 2 сантиметров. Нам известно, что периметр равен 44 сантиметра. Составляем уравнение: х + х + х + 2 + х + 2 = 44; 4 * х + 4 = 44; 4 * х = 44 - 4; 4 * х = 40; х = 40 : 4; х = 10 сантиметров - длины сторон ВС и АD; 10 + 2 = 12 сантиметров - длины сторон АВ и СD; 2) Площадь S abcd = АВ * ВС; S abcd = 12 * 10; S abcd = 120 сантиметров квадратных. ответ: 120 сантиметров квадратных.