В ромбе все стороны равны А также по условию диагональ равна стороне, значит треугольник, образованный сторонами и диагональю равносторонний, значит все углы по 60 Т.к диагонали ромба пересекаются под прямым углом, получаются 4 равных прямоугольных треугольника, а у одного из них один из углов 60, значит 2-ой угол прямоугольного треугольника = 30, а значит углы между диагоналями и сторонами ромба равны 30;30;60;60;30;30;60;60 (по часовой стрелке сверху) Диагональ ромба делит угол пополам - это свойство ромба, значит углы ромба равны 60;120;60;120 Проверка: 120+120+60+60=360 А сумма углов четырёхугольника = 360, значит решение верно!
1). Ромб - четырёхугольник с равными сторонами. Одна из диагоналей = 6 см => половина диагонали = 3 см (так как в точке пересечения диагоналей ромба диагонали делятся пополам под прямым углом). 2). У нас получился прямоугольный треугольник, где сторона ромба является гипотенузой, и одним из катетов этого треугольника является половина диагонали. 3). По теореме Пифагора найдём 2-й катет: 5² = 3² + х² => х² = 25 - 9 = 16 => х = 4 см. Это мы нашли второй катет и половину второй диагонали соответственно. 4). Вторая диагональ = 4*2 = 8 см. 5). Площадь ромба находится по этой формуле: S = (d1*d2)/2 = (8*6)/2 = 48/2 = 24 см². ответ: 24 см².