EB=EF, значит треугольник EBF - равнобедренный.
и угол EBF равен углу EFB.
Углы ВАС и ВСА равны, т.к. треугольник АВС равнобедренный, значит можно записать, что угол АСВ равен (180°-∠АВС) / 2
Угол CFE и EFB смежные, и в сумме 180°
Значит ∠EFC = 180°-∠EFВ = 180°-∠EBF = 180°-∠АВС
Биссектриса делит угол EFC пополам, значит
∠KFC = 1/2 EFC = (180°-∠АВС) / 2 = ∠АСВ
Поскольку ∠АСВ=∠KCF=∠KFC, то треугольник СKF имеет равные углы при основании CF следовательно он равнобедренный.
А в равнобедренном треугольнике СКF KC=KF, что и требовалось доказать.
<2=<5=143 градуса,как вертикальные
<3=<2=143 градуса,как накрест лежащие
<8=<3=143 градуса,как вертикальные
<2+<4=180 градусов,как односторонние
<4=180-143=37 градусов
<1=<4=37 градусов,как накрест лежащие
<6=<1=37 градусов,как соответственные
<7=<6=37 градусов,как внешние накрест лежащие
Номер 2
<1=<4=48 градусов,как накрест лежащие
<3+<1=180 градусов,как односторонние
<3=180-48=132 градуса
<7=<1=48 градусов,как вертикальные
<6=<4=48 градусов,как вертикальные
<5=<3=132 градуса,как соответственные
<8=<5=132 градуса,как внешние накрест лежащие
<2=<8=132 градуса,как соответственные
Объяснение: