Рассмотрим Δ APK и ΔMPN, они равны, потому что AP=PN (по условию), KP=PM (по условию), ∠APK = ∠MPN (вертикальные углы), что и требовалось доказать. Так как треугольники равны, а значит они имеют равные стороны и углы, отсюда MN=AK=24
ответ: доказано; 24.
№3
Дано:
BA=DC
AD=BC
∠CAD=37
Доказать: ΔABC = ΔADC
Найти: ∠BCA
ΔABC=ΔADC, потому что AB=DC (по условию), AD=BC (по условию), AC -общая сторона, это третий признак равенства треугольников, что и требовалось доказать. В равных треугольниках против равных углов лежат равные стороны, а значит ∠BCA = ∠CAD = 37
Если провести диаметр OY (это я его так обозначил, чтобы как-то потом называть), параллельно CD и перпендикулярно (само собой) AB, то он пройдет через середину AB, то есть точки A и B симметричны относительно OY; Теперь надо построить хорду C1D1, симметричную CD относительно OY; ясно, что она параллельна CD и перпендикулярна AB, ясно, что C1D1 = CD; и вообще - CDD1C1 это прямоугольник. Что означает, что CD1 - диаметр. Поскольку при зеркальном отражении относительно OY точка A переходит в B, а точка D - в точку D1, то BD = AD1; (по определению равенства фигур, между прочим). Остается заметить, что, раз CD1 - диаметр, то треугольник ACD1 - прямоугольный, и записать для него теорему Пифагора.
Рассмотрим ΔАВD. Он - прямоугольный, так как ВD⊥АВ⇒∠DВА=90°. Найдем ∠АDВ по теореме о сумме ∠Δ: ∠АDВ=180°-60°-90°=30° Рассмотрим ∠ВDА и ∠DВС, учитывая, что ВС∫∫АD(по определению трапеции): эти углы накрест лежащие при парал. прям. и сек. ⇒ они равны(по св-ву парал. прям) ⇒ ∠АDВ=∠СВD=30°. При этом, ВD - так же биссектриса ∠D⇒∠АDВ=∠ВDС=30° ⇒ ∠D=60° ⇒ АВСD - равнобедренная трапеция(по признаку) Найдем ∠DСВ. Рассмотрим ΔВСD: ∠В=∠D=30 ⇒ найдем ∠С по теореме о сумме ∠Δ: 180°-60°=120° ∠DCВ=∠АВС(по опр. равноб. трап.) ⇒ АВС=120° ответ: 60°, 60°, 120°, 120°
Дано:
AP=PN
KP=PM
AK = 24
Доказать: ΔAPK=ΔMPN
Найти: MN
Рассмотрим Δ APK и ΔMPN, они равны, потому что AP=PN (по условию), KP=PM (по условию), ∠APK = ∠MPN (вертикальные углы), что и требовалось доказать. Так как треугольники равны, а значит они имеют равные стороны и углы, отсюда MN=AK=24
ответ: доказано; 24.
№3
Дано:
BA=DC
AD=BC
∠CAD=37
Доказать: ΔABC = ΔADC
Найти: ∠BCA
ΔABC=ΔADC, потому что AB=DC (по условию), AD=BC (по условию), AC -общая сторона, это третий признак равенства треугольников, что и требовалось доказать. В равных треугольниках против равных углов лежат равные стороны, а значит ∠BCA = ∠CAD = 37