Треугольник BAD - равнобедренный с основанием BD, ведь его боковыми сторонами являются AB и AD, а они равны, т.к. все стороны ромба равны. Получается, что AC - биссектриса угла BAD, т.к. диагонали ромба (AC и BD) всегда пересекаются под прямым углом, а это значит, что AC - высота, проведенная к основанию равнобедренного треугольника, а она является также и биссектрисой. Получается, что угол BAD = 2* 28 = 56 градусов. Угол DCB = углу BAD, a угол CBA = углу CDA. => угол CBA = угол CDA = (360 - 2*56)/2 = (360 - 112) /2 = 248/2 = 124 ответ: величина тупого угла = 124 градуса
Известно, что диагонали прямоугольника равны и точкой пересечения делятся пополам. Нарисуем прямоугольник АВСД, проведем в нем диагонали.Точку пересечения диагоналей обозначим О.Проведем ОЕ перпендикулярно ВД.Соединим В и Е.В треугольнике ВЕД ВО=ОД по построению. ОЕ в нем медиана и высота. треугольник ВЕД - равнобедренный Рассмотрим прямоугольный треугольник АВЕ ВЕ=2АЕ ( из равенства ВЕ=ЕД)синус угла АВЕ=а:2а=0,5, отсюда следует что угол равен 30°Второй угол, на который диагональ ВД поделила угол АВС, равен угол СВЕ= 90°- 30°= 60°Остальные углы прямоугольника делятся диагоналями также на углы 30° и 60°.