Длина боковой стороны равнобедренного треугольника = 10 см, а высота прорведённая из его вершины к основанию 8 см. вычислить радиус окружности описанной около треугольника..
1) Формула: R=(a*b*c)/(4*S), где a, b, c - стороны тр-ка, S - его площадь.
2) Пусть в тр-ке АВС (АВ=ВС) к основанию ВС проведена высота ВD (высота, медиана и биссектриса!). Рассмотрим прямоугольный тр-к АВD: по теореме Пифагора AB^2=BD^2+AD^2, где АВ=10, BD=8. Значит AD^2=AB^2-BD^2=100-64=36, AD=6 (см). Т.к. BD - медиана, то АС=2*6=12 (см).
3) Найдем площадь тр-ка АВС по формуле Герона: р=(10+10+12)/2=16; р-10=6; р-12=4. Тогда S=sqrt(16*6*6*4)=4*6*2=48 (квадр. см)
4) Итак, согласно формулы, R=(10*10*12)/(4*S)=(1200)/(4*S)=300/S=300/48=6,25 (см).
1. MOН + MOН = 180 угол MOН = 64 град. 180 - 64 = 116 - угол MOP по свойствам прямоугольника, треуг. НOM и KOP равны. => 64 град = это углы OMP и OPM , а т.к. это равнобед. треуг. , то 64:2 = 32 град. ответ: 32 градуса. 2. Получается, что из определения трапеции мы знаем что у нее 2 основания. а в равнобедренной трапеции углы при основании равны. следовательно: трапеция АВСД. угол А=углуД= 70 уголВ= углуС=110(т.к. сумма всех углов в четырехугольнике 360 градусов, то 360-140=220/2=110 4. В равнобедренной трапеции углы при одном основании равны ∠В = ∠С = 210 /2 = 105° (каждый угол при меньшем основании) Сумма всех углов трапеции = 360° 360° - 210° = 150° - сумма углов при большем основании ∠ А = ∠ Д =150 / 2 = 75° ответ: 75° ; 105°; 105°; 75° - углы трапеции. 5. Пусть одна сторона параллеограмма x, тогда другая x+6. (х+х+6)2=P=60см. 2х+6=30см. 2х=24см. х=12см. - одна сторона парллеограмма. 12+6=18см - другая сторона.
1. MOН + MOН = 180 угол MOН = 64 град. 180 - 64 = 116 - угол MOP по свойствам прямоугольника, треуг. НOM и KOP равны. => 64 град = это углы OMP и OPM , а т.к. это равнобед. треуг. , то 64:2 = 32 град. ответ: 32 градуса. 2. Получается, что из определения трапеции мы знаем что у нее 2 основания. а в равнобедренной трапеции углы при основании равны. следовательно: трапеция АВСД. угол А=углуД= 70 уголВ= углуС=110(т.к. сумма всех углов в четырехугольнике 360 градусов, то 360-140=220/2=110 4. В равнобедренной трапеции углы при одном основании равны ∠В = ∠С = 210 /2 = 105° (каждый угол при меньшем основании) Сумма всех углов трапеции = 360° 360° - 210° = 150° - сумма углов при большем основании ∠ А = ∠ Д =150 / 2 = 75° ответ: 75° ; 105°; 105°; 75° - углы трапеции. 5. Пусть одна сторона параллеограмма x, тогда другая x+6. (х+х+6)2=P=60см. 2х+6=30см. 2х=24см. х=12см. - одна сторона парллеограмма. 12+6=18см - другая сторона.
1) Формула: R=(a*b*c)/(4*S), где a, b, c - стороны тр-ка, S - его площадь.
2) Пусть в тр-ке АВС (АВ=ВС) к основанию ВС проведена высота ВD (высота, медиана и биссектриса!). Рассмотрим прямоугольный тр-к АВD: по теореме Пифагора AB^2=BD^2+AD^2, где АВ=10, BD=8. Значит AD^2=AB^2-BD^2=100-64=36, AD=6 (см). Т.к. BD - медиана, то АС=2*6=12 (см).
3) Найдем площадь тр-ка АВС по формуле Герона: р=(10+10+12)/2=16; р-10=6; р-12=4. Тогда S=sqrt(16*6*6*4)=4*6*2=48 (квадр. см)
4) Итак, согласно формулы, R=(10*10*12)/(4*S)=(1200)/(4*S)=300/S=300/48=6,25 (см).