Объяснение: №1. 1) Так как АМ=2МС, то пусть АМ=2х, МС=х, тогда АС= АМ+МС=х+2х=3х 2) Пусть МК- данный серединный перпендикуляр, К∈АВ, АК=КВ= с/2=0,5с, где гипотенуза АВ=с; М∈АС, МК⊥АВ 3)ΔАВС подобенΔАМК : по двум углам: ∠А-общий, ∠С=∠К=90°, значит их стороны пропорциональны АС/АК= АВ/АМ ⇒3х/0,5с = с/2х, ⇒0,5с²=6х², ⇒х= с/√12 3) Из ΔАВС ⇒ Sin B=AC/AB= 3x/c=3с/(с√12)= 3√12/12= √3/2, ⇒∠В=60°, тогда∠А=90°-60°=30° №2. Раз ΔАВС-прямоугольный, тогипотенуза больше катета, ⇒АС-гипотенуза, ∠В=90°. ТО расстояние: а) от A до BC равно 24, б) от C до AB равно 7, в) может ли расстояние от B до AC быть равным 10см?- Нет, т.к. в прямоугольном ΔВМС гипотенуза ВМ должна быть больше катета ВМ ( ВМ⊥АС)
Дано: прямі a i b; a ∩ b = A. Коло з центром в точці О.
Побудувати: на колі точки, які рівновіддалені від прямих a i b.
Побудувати.
ГМТ віддалених від двох заданих прямих, що перетинаються, де дві прями що є
бісектрисами кутів, утворених парою заданих прямих.
За властивістю: кут між бісектрисами двох прямих, що перетинаються, є прямий кут.
Тому задача побудувати бісектриси двох кутів, що утворилися при перетині двох заданих прямих.
Будуємо бісектрису кута 1.
1) Будуємо дугу з центром в точці А довільного радіуса. Це дуга перетинає сторони кута у точках В i С.
2) Будуємо дугу довільним радіусом з центром в точці В.
3) Будуємо дугу того ж радіуса з центром в точці С.
4) Ці дуги перетинаються в точці D.
5) Будуємо промінь AD, що є бісектрисою ∟1.
Так само будуємо бісектрису ∟2.
Объяснение:
a-b+c=0
1-(-2)+(-3)=0
x1= 1
x2= 3/2=1.5