Чертим ромб АВСD, его стороны по 10см, угол А=30. Диагонали его пересекутся под прямым углом в точке О и этой точкой поделятся пополам. Из точки О проведем перпендикуляр ОН к стороне АВ. ОН и есть радиус вписанной в ромб окружности. Найдем диагональ ромба ВD по теореме косинусов:
В правильной четырёхугольной пирамиде, апофемой называется высота боковой грани. В данной задаче нужно найти расстояние от центра основания пирамиды до боковой грани. Под расстоянием до боковой грани, понимается расстояние до центра боковой грани, данный центр находится в центре апофемы. Центр апофемы делит её пополам (5/2=2,5). Построим треугольник АВС: АВ - высота пирамиды равная 3 АС - апофема равная 5 ВС - расстояние до ребра грани, так как треугольник АВС прямоугольный (следует из того что АВ - высота), то по теореме Пифагора ВС=4 (25=9+16). BH - является высотой треугольника ABC BS - является медианой ABC, (AS=SC=2,5) Опустим перпендикуляр из точки S на высоту пирамиды AB, образуем точку K. Треугольник AKS является прямоугольным и подобным треугольнику ABC, (стороны треугольника AKS относятся у сторонам треугольника ABC в отношении 1/2, то есть треугольник AKS в два раза меньше треугольника ABC). AK=KB=1,5; треугольник BKS прямоугольный и он равен треугольнику AKS значит BS=2,5. ответ: 2,5
Пусть будет трапеция АВСЕ, где ВС и АЕ - основания, причём ВС=1, АЕ=6. Опустим высоты ВН и СМ на основание АЕ. ВНМС - прямоугольник, потому что ВС параллельно НМ и ВН параллельно СМ, а между собой они перпендикулярны. Значит, НМ=ВС=1, значит, АН+МЕ=5, а раз трапеция равнобедренная, значит, прямоугольные треугольники АВН и СМЕ равны, значит, АН=МЕ=2,5. А - острый угол, косинус А равен 5\7 равен АН\АВ, откуда АВ=(7\5)*АН=3,5
Периметр трапеции равен сумме дли всех её сторон, равен 6+1+3,5+3,5=14
Чертим ромб АВСD, его стороны по 10см, угол А=30. Диагонали его пересекутся под прямым углом в точке О и этой точкой поделятся пополам. Из точки О проведем перпендикуляр ОН к стороне АВ. ОН и есть радиус вписанной в ромб окружности. Найдем диагональ ромба ВD по теореме косинусов:
BD^2=AB^2+AD^2-2*AB*AD*cosA=100+100-2*10*10*cos30=200-100*√3=27
BD=5,2см ВО=5,2/2=2,6см
По теореме Пифагора АО^2=АВ^2-BO^2=100-6,76=93,24
Сейчас работаем с треугольником АОВ. Его площадь можно найти двумя Отсюда выразим ОН:
ОН=2S/АВ=25/10=2,5см.
ответ: 2,5см.