трапеция авсд, высота вн пересекает диагональ ас в точке о, при этом во =10, он=8.; ав =вс=х по условию, значит треугольники аон и сов подобны по двум углам (так как угол вас =углу вса и углы при вершине о равны как вертикальные) из подобия треугольников следует пропорция вс/ан=во/он, т.е х/ан=10/8,значит ан= 4х/5 и всё нижнее основание ад= 4х/5+х+4х/5, т.е ад=13х/5. но из прямоугольного треугольника авн по теореме пифагора авв квадрате = ан в квадрате + вн в квадрате, т.е х в квадрате = (4х/5)в квадрате + 18 в квадрате. отсюда х=30. тогда верхнее основание вс=30,нижнее ад= 13х/5=78 и площадь трапеции равна полусумме оснований умножить на высоту, т.е (78+30)/2 и умножить на 18, получится 972.
ответ: 972
противолежащий этому углу катет равен половине гипотенузы.
ВС = АВ /2
ВС = 8/2 = 4 см
2. соs C = BC/AC
cos C = √3/2
угол С = 30 градусов
3. а = 24 см катет
с = 25 см гипотенуза
b^2 = c^2 - a^2
b^2 = 25^2 - 24^2 = 625 - 576 = 49
b = 7 cm
P = a +b+c
P = 24+25+7 = 56 cm
4. BC =4√2
AC = 5
AB^2 = BC^2 - AC^2
AB^2 = (4√2)^2 -5^2 = 32 -25 = 7
AB = √7
sin B = AC/BC
sin B = 5/ 4√2 =5/ 5.66 = 0.88339
угол В = 62 градусов
угол С = 180 -угол А -угол В
угол С = 180 -90 - 62
угол С = 28 градуса
или cos C = AC/BC
cos C = 5/4√2 = 0.88339
угол С = 28 градусов
5. см. вложенный файл