MB= AB/2
BC/AB=1/2 <=> BC= AB/2 =MB
△BMC - равнобедренный.
∠BMC=∠BCM
Аналогично ∠AMD=∠ADM
∠A= 180°-∠AMD-∠ADM =180°-2∠AMD
∠B= 180°-∠BMC-∠BCM =180°-2∠BMC
Cумма односторонних углов при параллельных прямых равна 180°.
∠A+∠B=180° <=>
180° -2∠AMD +180° -2∠BMC =180° <=>
∠AMD+∠BMC =180°/2 =90°
∠CMD= 180°-∠AMD+∠BMC =180°-90° =90°
ИЛИ
Средняя линия MN делит ABCD на два равных параллелограмма. Основания ABCD равны половинам его сторон, следовательно BMNC и AMND - ромбы. Диагонали ромба являются биссектрисами его углов.
∠CMD =∠CMN+∠DMN =∠BMN/2+∠AMN/2 =180/2 =90.
Объяснение:
1)Из истори Слово «ромб» греческого происхождения, оно означало в древности вращающееся тело, веретено, юлу. Ромб связывали первоначально с сечением, проведенным в обмотанном веретене. Слово «ромб» греческого происхождения, оно означало в древности вращающееся тело, веретено, юлу. Ромб связывали первоначально с сечением, проведенным в обмотанном веретене. В «Началах» Евклида термин «ромб» встречается только один раз в определениях I - ой книги, свойство ромба вообще не изучаются. Ромб также имел смысл бубна, который в древности был не круглым, а четырехугольным. В «Началах» Евклида термин «ромб» встречается только один раз в определениях I - ой книги, свойство ромба вообще не изучаются. Ромб также имел смысл бубна, который в древности был не круглым, а четырехугольным.
2)Слово «ромб» впервые употребляется у Герона и Паппа Александрийского.
180-116=64