Длина основания равнобедренного треугольника равна 32 см, а длина внутреннего отрезка прямой, которая проходит через точку пересечения высот параллельно основанию, равна 14 см. найдите длинну боковой стороны
См. рисунок. По условию основание a = 32; отрезок c = 14; надо найти b. Так как отрезок с проходит через точку пересечения перпендикуляров к сторонам, то равны отмеченные на рисунке буквой α углы. Отрезок высоты от вершины до точки пересечения высот я отметил буквой H, а от точки пересечения высот до основания - буквой h. Вся высота равна H + h, разумеется. tg(α) = h/(a/2); tg(α) = (c/2)/H; tg(α) = (a/2)/(H + h); по идее этих трех соотношений должно хватить, чтобы найти H + h; Если исключить tg(α), получится 2h/a = c/(2H); c/H = a/(H + h); или 4Hh = ac; c(H + h) = aH; => H = hc/(a - c); => H + h = ha/(a -c); Получилось h^2 = a(a - c)/4; и H + h = (a/2)√(a/(a - c)); b^2 = (H + h)^2 + (a/2)^2 = (a/2)^2*(1 + a/(a - c)) = (a/2)^2*(2a - c)/(a - c); Это ответ. Если подставить a = 32; c = 14; то получится b^2 = 16^2*50/18 = 16^2*25/9 = (80/3)^2; b = 80/3;
Определяем параметры треугольника АВС, как части трапеции. Сумма квадратов сторон ВС и АС равна 400+225 = 625. Квадрат стороны АВ равен 25² = 625. Значит, треугольник АВС прямоугольный с катетами ВС и АС и гипотенузой АВ и прямым углом ВСА.
Чтобы треугольник второй части трапеции был подобен первому, значит, в нём угол Д должен быть прямым. Угол АСД равен углу ВАС. Синус этого же угла равен sinACD = √(1-0,6²) = 0,8. Находим стороны: СД = 15*0,6 = 9 см, АД = 15*0,8 = 12 см.
Сторона АД является и высотой трапеции АВСД. S = ((25+9)/2)*12 = 17*12 = 204 см².
1)найдем уравнение стороны BC y=(4/3)x+2/3 AM будет иметь угол наклона равный 4/3, и проходить через точку A(7,-6) 3y-4x+46=0 2)Уравнение прямой проходящей через точки A (x a, y a) и P (x p, y p) в общем виде: x-xa / xd-xa = y-ya / yd-ya Мы не знаем координаты точки P, следовательно, нам необходимо найти направляющий вектор прямой AP. координаты AB(-9;4) координаты AC(-6;8) отсюда AT(T вершнина достроенного параллелограмма) (-15;12) подставим всё в уравнение x-7 /-15-7 = y+6 / 12+6 получим уравнение 9x+11y=-3 это и есть искомое уравнение 3)BF перпендикулярна AC т.е. угол наклона обратнопропорционален уравнение прямой AC : y=-4/3 * x + 10/3 угол наклона BF = 3/4 уравнение BF: 3y-4x-2=0 4) координаты вектора ВС(3,4) а вектора ВА(9,-4) скалярное произведение этих векторов равно 3*9+4*(-4)=43 Длина BC=5 длина BA=корень(97) cosB=43/(5*корень(97) )
Так как отрезок с проходит через точку пересечения перпендикуляров к сторонам, то равны отмеченные на рисунке буквой α углы.
Отрезок высоты от вершины до точки пересечения высот я отметил буквой H, а от точки пересечения высот до основания - буквой h. Вся высота равна H + h, разумеется.
tg(α) = h/(a/2);
tg(α) = (c/2)/H;
tg(α) = (a/2)/(H + h);
по идее этих трех соотношений должно хватить, чтобы найти H + h;
Если исключить tg(α), получится
2h/a = c/(2H);
c/H = a/(H + h);
или
4Hh = ac;
c(H + h) = aH; => H = hc/(a - c); => H + h = ha/(a -c);
Получилось h^2 = a(a - c)/4; и H + h = (a/2)√(a/(a - c));
b^2 = (H + h)^2 + (a/2)^2 = (a/2)^2*(1 + a/(a - c)) = (a/2)^2*(2a - c)/(a - c);
Это ответ. Если подставить a = 32; c = 14; то получится
b^2 = 16^2*50/18 = 16^2*25/9 = (80/3)^2;
b = 80/3;