Четырехугольник авсд вписан в окружность так, что длина стороны ад равна радиусу окружности, а длина стороны вс больше радиуса. известно, что угол двс=50° угол вад=115°. найдите угол в градусах между прямыми ав и сд
Сделаем рисунок и рассмотрим его. Пусть ВМ и АD пересекаются в точке Н. Медиана ВМ делит АС на два равных отрезка АМ=СМ. АМ=4:2=2 АН в треугольнике АВМ является высотой - угол АНВ - прямой , т.к. АD перпендикулярна ВМ. Но она же и медиана, т.к. по условию ВН=НМ, следовательно, треугольник ВАМ - равнобедренный ( в равнобедренном треугольнике медиана, высота и биссектриса, проведенные из вершины угла против основания - совпадают, и, наоборот, если медиана и высота треугольника равны, то этот треугольник - равнобедренный). АВ=АМ=2 ( с нескольких попыток не удалось загрузить рисунок, но он очень простой, несложно выполнитьсамостоятельно)