Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника, а углы, заключенные между этими сторонами равны, то треугольники подобны.
Дано: ∠А = ∠А₁; АВ : А₁В₁ = АС : А₁С₁ . Доказать: ΔАВС подобен ΔА₁В₁С₁. Доказательство: Достроим на стороне АС треугольник АВ₂С, в котором углы, прилежащие к стороне АС, равны углам в треугольнике А₁В₁С₁ (как на рисунке) . Тогда ΔАВ₂С подобен ΔА₁В₁С₁ по двум углам. Запишем отношение сторон в этих треугольниках: АВ₂ : А₁В₁ = АС : А₁С₁. Сравним полученную пропорцию с данной в условии: АВ : А₁В₁ = АС : А₁С₁ Значит, АВ₂ = АВ. Но тогда ΔАВС = ΔАВ₂С по двум сторона и углу между ними (АС - общая, АВ₂ = АВ и ∠А = ∠А₁ = ∠1 по условию). Итак, ΔАВС = ΔАВ₂С, а ΔАВ₂С подобен ΔА₁В₁С₁, значит ΔАВС подобен ΔА₁В₁С₁. Доказано.
Прямая BC имеет вид y=bx+c Составим систему уравнений: Прямая BC описывается уравнением y=-0,2x+8,8 Прямая AD || BC, значит коэффициент b у них одинаковый, отличается только коэффициент с. Можем составить уравнение прямой, проходящей через точку A, параллельную BC y=bx+c 2=-0,2*2+c c=2,4 y=-0,2x+2,4
Проверка:
Прямая AB имеет вид y=bx+c Составим систему уравнений: Прямая AB описывается уравнением y=3x-4 Прямая CD || AB, значит коэффициент b у них одинаковый, отличается только коэффициент с. Можем составить уравнение прямой, проходящей через точку С, параллельную АВ y=bx+c 10=-6*3+c c=28 y=3x+28
Координаты точки D: -0,2x+2,4=3x+28 3,2x=-25,6 x=-8
y=3*(-8)+28=4
D(-8;4)
По точкам можно построить параллелограмм ABCD и убедиться в правильности решения
с=пхд
с=3,14
5х2=10
10х3,14=31.4