Для выпуклого многоугольника есть формула суммы его углов:
S=(180n - 360) или S=180°(n-2). (1)
В нашем случае сумма четырех углов данного многоугольника равна 4*120°=480°, следовательно, S > 480, так как условие подразумевает наличие хотя бы одного острого угла.
У выпуклого многоугольника каждый угол должен быть меньше 180°.
Тогда из формулы (1):
(180n-360 -480)/(n-4) < 180. Решаем это неравенство при условии, что
n - целое положительное число (количество сторон многоугольника) и
n > 4 (на 0 делить нельзя).
Вычтем из обеих частей неравенства 180:
(180n-360 -480)/(n-4) -180< 0. Или
(180n-840 - 180n +720)/(n-4)<0 => -120/(n-4) < 0
Итак, неравенство спроведлмво при любом n > 4, а так как n - целое число, то
ответ: число сторон может быть ЛЮБЫМ, равным или большим 5.
Проверим:
при n=4 сумма S = 180(4-2) = 360, что не соответствует условию.
При n = 5 имеем: S=180*3 = 540° и таким образом, остается острый угол, равный 540°-480°=60°.
При n = 6 сумма углов будет S = 180*4=720° и на два оставшихся угла остается 720°-480° = 240°, что соответствует условию, так как 240:2=120°.
При n = 10 сумма углов будет S = 180*8=1440° и на 6 оставшихся углов остается 1440°-480° = 960°, что соответствует условию, так как 960:6=160°.
При n = 100 сумма углов будет S = 180*98=17640° и на 96 оставшихся углов остается 17640°-480° = 17160°, что соответствует условию, так как 17160:96=178,75°.
Объяснение:
Третья сторона треугольника в основании равна 10 и его площадь
S= 1/2* a*b = 1/2*6*8=24см2
Площадь боковой поверхности призмы с периметром основания P равна
Sб.=P*h=24*10 = 240cм2
Sп.п = 2*Sосн + Sбок = 48 + 240= 288 см2
2)Площадь основания – это площадь прямоугольного треугольника и равна
Sосн =1/2*a*b = 1/2*6*8=24 см2
Тогда площадь боковой поверхности, равна
Sб = h*(a+b+c)= Sп-2Sосн.
Sб.= 288-2*24= 240см2
где a, b, c – длины сторон треугольника; h – высота призмы. Сначала найдем третью сторону треугольника по теореме Пифагора: Y- корень
с= Y6^2 +8^2=Y 36+64 =Y100= 10 см
Высота призмы равна:
h = Sб./ (a +b+ c)= 240/ 6+8+10 = 10 см
Боковая поверхность усеченного конуса вычисляется по формуле Sбок=ПиL(R+r), следовательно 208Пи=ПиL(R+r), отсюда (R+r)=16. Рассматриваем треугольник с высотой 5 и гипотенузой 13, по т Пифигора 3-я сторона = 12. 16-12=4, 4:2=2(Радиус r), 12+2=14(радиус R)