Прямая задается уравнением у=кх+в, точки С и Д лежат на этой прямой 1=-3к+в 9=-5к+в Получили систему уравнений , вычтем из 2-го уравнения 1-ое, получим 8=- 2к, к= - 4 подставим в первое уравнение 1=12+в, в= - 11 Итак, уравнение имеет вид у= - 4х - 11
Пусть АО=ОС=r; Δ CОВ ~ Δ АМВ по двум углам ( ∠В-общий; ∠АМВ=∠ОСВ). СО:АМ=СВ:МВ; r: AM=4:6,4⇒ AM=1,6r
Рассмотрим прямоугольную трапецию МСОА. Проведем высоту СЕ. (см чертеж 2, отдельный) Из прямоугольного треугольника ОЕА по теореме Пифагора ОА²=ОЕ²+ЕА²; r²=2,4²+0,36r²; 0,64r²=5,76 r²=9 r=3.
АМ=1,6r=1,6·3=4,8
Из прямоугольного треугольника АМС по теореме Пифагора АС²=АМ²+МС²; АС²=4,8²+2,4²=(2,4·2)²+2,4²=2,4²·(2²+1)=2,4²·5 АС=2,4√5 Δ AMC ~ Δ CMD AC : BC=MC : CD; 2,4√5 : 4=4,8 : СD ⇒ CD=8√5/5=1,6√5
AD=AC+CD=2,4√5+1,6√5=4√5.
По свойству касательной и секущей, проведенных к окружности малого радиуса из точки В: произведение секущей ВА на ее внешнюю часть ВК равно квадрату касательной ВС ВА· (ВА-AK)=BC²; AK=2r=2·3=6 ВА· (ВА-6)=4²; ВА²-6ВА-16=0- квадратное уравнение. D=36+64=100 BA=(6+10)/2=8 BA=2R 2R=8 R=4
В равнобедренном треугольнике АВС АВ=ВС, R=ВО1=25 см, r=МО2=12 см. С заданными параметрами R и r можно построить два равнобедренных тр-ка, в одном из которых угол при вершине будет меньше шестидесяти градусов, а в другом - больше. Действительно, только в равностороннем треугольнике центры вписанной и описанной окружностей совпадают, а в нашем, равнобедренном треугольнике, они расположены отдельно, и лежат на высоте, проведённой к основанию. Для обоих треугольников расстояние между центрами вписанной и описанной окружности можно вычислить по формуле Эйлера: d²=R²-2Rr, где d=О1О2. d²=25²-2·25·12=25, d=5 см. Пусть АС=а, АВ=ВС=b. Из формулы S=abc/2R имеем при а=b: S=b²с/2R ⇒ b²=2RS/c. Также S=ch/2, значит b²=2Rch/(2c)=2Rh. Рассмотрим два варианта отдельно. 1) ∠В<60°, тогда h>R+r. h=ВМ=ВО1+О1О2+МО2=R+d+r=25+5+12=42. b²=2·25·42=2100, b=10√21 см. В тр-ке АВМ АМ=√(АВ²-ВМ²)=√(2100-42²)=√336=4√21. Периметр АВС: Р=2(АВ+АМ)=2(10√21+4√21)=28√21 см - это ответ. 2) ∠В>60°, тогда h<R+r. Так как d<r или О1О2<МО2, то центр описанной окружности лежит внутри треугольника АВС. h=ВМ=ВО1+МО2-О1О2=R+r-d=25+12-5=32 cм. b²=2·25·32=1600, b=40 см. В тр-ке АВМ АМ=√(АВ²-ВМ²)=√(40²-32²)=24 см. Периметр АВС=2(АВ+АМ)=2(40+24)=128 см - это ответ.
1=-3к+в
9=-5к+в
Получили систему уравнений , вычтем из 2-го уравнения 1-ое, получим 8=- 2к, к= - 4
подставим в первое уравнение 1=12+в, в= - 11
Итак, уравнение имеет вид у= - 4х - 11