80 . в четырехугольнике abcd биссектриса угла а перпендикулярна биссектрисе угла в. биссектриса угла а пересекает сторону вс в точке м, а биссектриса угла в сторону ad в точке n. докажите , что abmn - ромб.
В четырехугольнике ABCD биссектриса угла А перпендикулярна биссектрисе угла В. Биссектриса угла А пересекает сторону ВС в точке М, а биссектриса угла В сторону AD в точке N. Докажите , что ABMN - ромб -------- В ∆ АВN биссектриса АО перпендикулярна BN. ⇒, АО - его высота и медиана, и этот треугольник равнобедренный. АВ=AN В ∆ АВМ - биссектриса ВО перпендикулярна АМ. ⇒ ∆ АВМ - равнобедренный. АВ=ВМ. Но АВ=AN, значит, АN=BM На том же основании АN=MN. В четырехугольнике АВМN все стороны равны, диагонали взаимно перпендикулярны и являются биссектрисами его углов. ⇒ АВМN - ромб, ч.т.д.
Во-первых, трапеция которая вписана в окружность является равнобедренной, поскольку: 1) сумма противоположных углов четырехугольника равна 180°; 2) сумма односторонних углов трапеции равна 180°; Значит углы при основании равны.
Пусть радиус окружности равен R; При этом TK = TN = R; По теореме синусов: Поскольку LT = KT как радиусы, треугольник LTK - равнобедренный и ∠KLT = ∠LKT = (180°-2α)/2 = 90-α; По теореме синусов: ; С одной стороны , с другой , откуда ; 2R = 5; Опустим перпендикуляры на основание с точек L и M; Тогда
Докажите , что ABMN - ромб
--------
В ∆ АВN биссектриса АО перпендикулярна BN. ⇒,
АО - его высота и медиана, и этот треугольник равнобедренный.
АВ=AN
В ∆ АВМ - биссектриса ВО перпендикулярна АМ. ⇒
∆ АВМ - равнобедренный.
АВ=ВМ.
Но АВ=AN, значит, АN=BM
На том же основании АN=MN.
В четырехугольнике АВМN все стороны равны, диагонали взаимно перпендикулярны и являются биссектрисами его углов. ⇒
АВМN - ромб, ч.т.д.