Смотри, у тетраэдра 6 рёбер, и среди них нет параллельных. Значит из них можно сделать 6 векторов в одну сторону, и 6 направленных в противоположные стороны.
Соответственно, два равных вектора можно приклеить к одному и тому же ребру тетраэдра, но никак не к разным рёбрам, ибо разные рёбра все идут под разными углами.
1) Основание прямой призмы – прямоугольный треугольник с гипотенузой 15см и катетом 12см. Найдите площадь боковой поверхности, если грань содержащая больший катет – квадрат. Решение. По Пифагору найдем второй катет основания призмы: √(15²-12²)=√(27*3)=9см. Следовательно, больший катет равен 12см и высота призмы равна 12см (так как боковая грань - квадрат 12х12 - дано). Площадь боковой поверхности призмы равна Sб=P*h, где Р - периметр, а h - высота призмы. Sб=36*12=432см².
2) Ребро правильного тетраэдра равно а. Постройте сечение плоскостью, проходящей через ребро АС и делящее его в отношении 1:2, и проходящей параллельно ребру АВ. Решение. Условие для однозначного решения не полное. Во-первых, не понятно условие "Постройте сечение плоскостью, проходящей через ребро АС и делящее его в отношении 1:2". Проходящее - содержащее это ребро или пересекающее его? Раз сечение делит ребро в отношении 1:2, значит плоскость пересекает это ребро и делит его в отношении 1:2, но считая от какой вершины? Во вторых, таких сечений может быть бесконечное множество, так как плоскость, параллельная прямой АВ, может пересекать тетраэдр в любом направлении. Например, параллельно грани АВS (сечение MNP) или проходящее через точку Q на ребре AS (сечение MQDN). Причем линия пересечения грани АSB и плоскости сечения будет параллельна ребру АВ. Вывод: однозначного решения по задаче с таким условием нет.
1. , где n - градусная мера соответственного центрального угла. Найдем радиус окружности: , где S - площадь круга. Найдем длину дуги: ответ: см. 2. Найдем сторону квадрата a: Радиус вписанной в квадрат окружности равен: , где a - сторона квадрата. Площадь вписанного треугольника равна: , где c - сторона правильного треугольника. Необходимо найти сторону правильного треугольника. Так как нам известен радиус описанной около треугольника окружности, то воспользуемся формулой: Найдем площадь правильного треугольника: . ответ: см.
Смотри, у тетраэдра 6 рёбер, и среди них нет параллельных. Значит из них можно сделать 6 векторов в одну сторону, и 6 направленных в противоположные стороны.
Соответственно, два равных вектора можно приклеить к одному и тому же ребру тетраэдра, но никак не к разным рёбрам, ибо разные рёбра все идут под разными углами.
Имхо.