3х - одна сторона
5х - вторая сторона
S=ab
3х•5х=960
15х=960
х2=960:15
х2=64
х=8
3•8=24- первая сторона
5•8=40 - вторая сторона
Р=2(а+б)
2•(24+40)=128 - периметр прямоугольника
ответ: 128
трапеция авсд, высота вн пересекает диагональ ас в точке о, при этом во =10, он=8.; ав =вс=х по условию, значит треугольники аон и сов подобны по двум углам (так как угол вас =углу вса и углы при вершине о равны как вертикальные) из подобия треугольников следует пропорция вс/ан=во/он, т.е х/ан=10/8,значит ан= 4х/5 и всё нижнее основание ад= 4х/5+х+4х/5, т.е ад=13х/5. но из прямоугольного треугольника авн по теореме пифагора авв квадрате = ан в квадрате + вн в квадрате, т.е х в квадрате = (4х/5)в квадрате + 18 в квадрате. отсюда х=30. тогда верхнее основание вс=30,нижнее ад= 13х/5=78 и площадь трапеции равна полусумме оснований умножить на высоту, т.е (78+30)/2 и умножить на 18, получится 972.
ответ: 972
дано: v(ц)=106π, a = 45°, k = 5√2
найти: v(пр) - ?
решение:
диагональ боковой грани призмы принадлежит самой бокой грани. а боковая грань в свою очередь касается поверхности цилиндра, поэтому расстояние между осью цилиндра и диагональю боковой грани - это есть радиус цилиндра.
k = r.
объем призмы находится по формуле:
v(пр) = s*h
найдем высоту.
v(ц) = π*r^2*h
h = v(ц) / π*r^2 =106π / 50π = 2,12
найдем площадь ромба:
s = 4r^2 / sina = 4*25*2/ sin45 = 50√2
v(пр) = s * h = 2,12 * 50√2 = 106√2
ответ: 106√2
Выразим первую сторону как 3х, а вторую как 5х.
3х*5х=960
15х^2=960
x^2=64
x=8
8*3=24 - первая сторона
8*5=40 - вторая сторона
Р=2*(24+40)=128
ответ: Р=128