Перпендикуляр, проведённый из точки окружности к диаметру, делит его на два отрезка, один из которых относится к диаметру как 9: 25. длина меньшей хорды, соединяющей данную точку с одним из концов диаметра, равна 45 см. набитые диаметр окружности.
Высота, проведенная к гипотенузе средне пропорциональна отрезкам, на которые ее делит. Нарисуйте сами. АВ у меня диаметр, СЕ-высота. СВ=45 по условию, ЕВ/АВ=9/25 по условию СЕ=корень (АЕ×ЕВ) СЕ^2=АЕ×ЕВ из прямоуг. треугольника СЕВ СЕ^2=СВ^2-ЕВ^2 приравниваем АЕ×ЕВ=СВ^2-ЕВ^2 АЕ=АВ-ЕВ=АВ-(9/25)АВ=(16/25)АВ (16/25)АВ×(9/25)×АВ=45^2-((9/25)× АВ)^2 решим это уравнение. (225/625)АВ^2=2025-(81/625)АВ^2 АВ^2=5625 АВ=75-диаметр
Осталось только выяснить, сосуд имеет форму конуса вершиной вверх или вершиной вниз. V₀ = 1600 мл 1. Конус в классической ориентации - основание внизу, вершина вверху. Пустая часть конуса подобна полному конусу с линейным коэффициентом подобия k=1/2 Площади, например осевого сечения конусов или их полной поверхности будут при этом относиться как k² Объёмы относятся как k³ Объём верхней пустой части сосуда составит V₁ = V₀*k³ = 1600/8 = 200 мл Объём жидкости, налитой до половины составит V₂ = V₀-V₁ = 1600-200 = 1400 мл 2. Конус перевёрнут - основание вверху, вершина смотрит вниз В этом случае заполнен только объём V₁ из пункта V₁ = 200 мл
Раскладіваю "по полочкам" 1) если середина удалена от катетов, то эти отрезки соответственно перпендикулярны катетам, значит , соответственно параллельны другим катетам. 2) если эти отрезки соответственно параллельны катетам (сторонам), да и еще проходят через середину гипотенузы( третьей стороны) , то они являются средними линиями. 3) если они являются средними линиями, то соответствующие им стороны в 2 раза больше, т.е. катеты будут равны 8 и 6 см 4) находим площадь прямоугольного треугольника S=8*6/2=24
Все. Даже не рисую рисунок. Задача простейшая, можно было все решить в одной строчке, но решил поэпистолярничать. :)
ЕВ/АВ=9/25 по условию
СЕ=корень (АЕ×ЕВ)
СЕ^2=АЕ×ЕВ
из прямоуг. треугольника СЕВ
СЕ^2=СВ^2-ЕВ^2
приравниваем
АЕ×ЕВ=СВ^2-ЕВ^2
АЕ=АВ-ЕВ=АВ-(9/25)АВ=(16/25)АВ
(16/25)АВ×(9/25)×АВ=45^2-((9/25)× АВ)^2
решим это уравнение.
(225/625)АВ^2=2025-(81/625)АВ^2
АВ^2=5625
АВ=75-диаметр