1)Если АС=ВС, то треуг. АВС - равнобедренный, откуда угол А равен углу В 2) Если sin A =, то угол A - 60 градусов, тогда и угол В тоже 60 градусов, следовательно и угол С тоже 60 градусов, получаем что треуг. АВС - равносторонний, значит AB=BC=AC=3 ответ: АС=3
Найдем <B.Из теоремы о сумме углов тр-ка он равен 75 градусам. По теореме синусов имеем,что CB/sinA=AC/sinB=AB/sinC. Значит, AC=(CB*sinB)/sinA=(2 корня из 3 * sin 75)/корень из 3/2=(2 корня из 3 *2*sin75)/корень из 3 (далее корень из трех сокращается)=4 sin75,что приблизительно равно 3,8636. Аналогично рассуждая, получаем,что AB=(CB*sinC)/sinA=4/корень из 2,избавившись от иррациональности в знаменателе,получим,что AB=2 корням из 2. Для нахождения площади воспользуемся формулой S=1/2 AB*AC*sinA=(2 корня из 2 *3,8636)2*корень из 3/2=(двойки сокращаются)=корень из 2 *3,8636*корень из 3/2.Если очень хочется,то можно сократить 3,8636 и 2, тогда получится 1,9318*корень из 2*корень из 3. ответ:2 корня из 2;3,8636;1,9318*корень из 2*корень из 3;75 градусов.
АК должно проходить через точку Н SH -высота пирамиды, Так как все грани наклонены под одинаковым углом к основанию, то Н- центр вписанной окружности. Проведем SK перпендикулярно ВС. По теореме о трех перпендикулярах НК тоже перпендикулярно ВС. Угол SKH - линейный угол двугранного угла между боковой гранью и пл. основания и поэтому угол SKH=60 НК одновременно будет радиусом вписанной окружности треугольника АВС. Плоскость SHK перпендикулярна ВС и следовательно грани SBC, поэтому шар будет касаться грани SВС в точке принадлежащей SK. Пусть центр шара - точка О Сделаем выносной чертеж плоскости SHK. ОМ перпендикулярно SK ОМ=OH=R. М - точка касания шара и боковой грани. MO1 перпендикулярно SH. O1M это будет радиус окружности, проходящей через точки касания. ОК является биссектрисой угла SKH=> угол OKH=30 Из треугольника ОНК: ОН/НК=tg30, HK=R*sqrt(3) HK/SK=cos60 => SK=2Rsqrt(3) (или катет против угла в 30 градусов) -апофема бококвой грани найдена. Одновременно мы нашли и КМ=НК=R*sqrt(3). Значит SM=R*sqrt(3) А тогда из подобия треугольников SMO1 и SKH следует, что O1M=(1/2)HK=(R*sqrt(3))/2 Тогда длина окружности проходящей через точки касания равна 2*pi*(R*sqrt(3))/2...
2) Если sin A =
ответ: АС=3