М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
MonSlon
MonSlon
21.02.2023 12:26 •  Геометрия

Из точки к прямой проведены две наклонные длины которых равны 13 см и 15 см. найдите расстояние от точки до прямой если разность проекций наклонных на эту прямую равна 4 см. заранее .

👇
Ответ:
nick149
nick149
21.02.2023
Давай обозначим меньшую проекцию (наклонной, которая 13) на базовую прямую незатейливой буквой х. Тогда вторая проекция (наклонной длины 15) будет по условию х+4. Искомое расстояние от точки  до прямой обозначим букой Н. Тогда по теореме Пифагора образуется два уравнения:

13 ^2 = x^2 + H^2
15^2 = (x+4)^2 + H^2

Имеем два уравнения с двумя неизвестными. Можно решить. Ну так решим же эту систему методами алгебры.

Проще всего сначала будет исключить Н, тогда получим одно уравнение:
15^2 - (x+4)^2 = 13^2 - x^2
225 - x^2 - 8*x - 16 = 169 - x^2
 40 = 8*x
x = 5

То есть первая проекция у нас выходит 5 см, вторая, соответственно, 5+4 = 9 см.

Осталось последнее телодвижение - по теореме Пифагора же находим Н = корень ( 13*13 - 5*5) = корень(144) = 12 см -- это ответ.

Ну, у меня так получилось. Лучше проверь, а то с калькулятором не дружу.
4,6(86 оценок)
Ответ:
KinezyOldside
KinezyOldside
21.02.2023
Расстояние от точки до прямой-это перпендикуляр, проведенный из точки к прямой. Значит, образуются два прямоугольных треугольника, у которых один катет равный, гипотенузы-это наклонные, вторые катеты-проекции. Пусть х - проекция меньшей гипотенузы. Тогда по т. Пифагора (расстояние от точки до прямой)^2=13^2-х^2
Проекция другой гипотенузы равны х+4. Тогда (расстояние от точки до прямой)^2 по т. Пифагора 15^2-(х+4)^2. Приравняем и решим получившееся уравнение.
169-х^2=225-х^2-8х-16
8х=40
х=40÷8=5 -меньший катет.
Значит, расстояние от точки до прямой равно=корень (13^2-5^2)=12
4,8(56 оценок)
Открыть все ответы
Ответ:
bella77777
bella77777
21.02.2023

ΔАВС - равносторонний, по условию С₁О - это отрезок, соединяющий центр О основания АВС с вершиной С₁, и перпендикулрный плоскости основания АВС, значит, пирамида C₁ABC - правильная, но не только, это и правильный тетраэдр, пусть все его стороны равны 1, тогда можно заметить, что в пирамиде С₁АВВ₁А₁ в основании лежит ромб, а её высота падает в точку Н - точку пересечения диагоналей ромба, но её боковые грани состоят из правильных треугольников, а значит, что и их прокеции будут равны и ВАУ! мы получаем в основании квадрат! То есть сама изначальная призма состоит из правильного тетраэдра и правильной четырёхугольной пирамиды, все стороны которых равны по 1.

∠(АА₁;(АВС₁)) = ∠(ВВ₁;(АВС₁))

Рассмотрим пирамиду В₁АВС₁ и возпользуемся методом площадей:

C₁H² + B₁H² = B₁C₁²  ⇒ C₁H = √2/2     ;   S (abc) = √3/2  ;  S (abb₁) = 1/2

См. приложение.  ответ: arcsin(√6/3)


Основания abc и a1b1c1 призмы abca1b1c1— равносторонние треугольники. отрезок, соединяющий центр o о
4,4(58 оценок)
Ответ:
nikitafill123
nikitafill123
21.02.2023

Sin(∠A1AH1) = √6/3. Угол ≈ 54,7°

Объяснение:

Достроим верхнее основание призмы до ромба, проведя A1D1 и C1D1 параллельно B1C1 и A1B1 соответственно. Точка D1 принадлежит плоскости АВС1.

Треугольник А1С1D1 равен треугольнику АВС по трем сторонам по построению.

A1D = CE (высоты равных правильных треугольников).

При а=1.  CE = √3/2 - как высота правильного треугольника.

В треугольнике АВС ОЕ = (1/3)*(√3/2)=√3/6,

СО = (2/3)*(√3/2)=√3/3 по свойству правильного треугольника.

В треугольнике СОС1 по Пифагору:

ОС1 = √(СС1² - СО²) = √(1 - 3/9) = √6/3.

В треугольнике С1ОЕ по Пифагору:

С1Е = √(ОС1² + ОЕ²) =  √(6/9+3/36) = √3/2.

Треугольник CEC1 - равнобедренный.  => Высота к боковой стороне СН = ОС1 = √6/3.

Треугольник АА1D равен треугольнику СС1Е по построению (A1D=CE, AD=C1E). =>  A1H1 = C1O = √6/3.

Угол A1АН1 - искомый угол по определению (AH1 - проекция АА1 на плоскость АВС1.

Sin(∠A1AH1) = AH1/AA1 = √6/3. Угол ≈ 54,7°


Основания abc и a1b1c1 призмы abca1b1c1— равносторонние треугольники. отрезок, соединяющий центр o о
4,4(25 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ