В прям. треугольнике гипотенуза меньше суммы двух катетов Гипотенуза больше любого из двух катетов (является больше стороной) Сумма двух углов равна 90 градусов Катет лежащий против угла 30 градусов равен половине гипотенузы
Сумма острых углов равна 90°<br />Катет лежащий против угла 30° равен половине гипотенузы.<br />Квадрат гипотенузы равен сумме квадратов катетов.<br /> Гипотенуза больше обоих катетов.
Для начала найдем отношение ВР/РС. Для этого: Проведем BD параллельно АС. Тогда <PAC=<BDA, как накрест лежащие при параллельных прямых BD и AC и секущей АD. ∆АКМ ~ ∆BKD по двум углам (1). ∆АРС ~ ∆DРВ по двум углам (2). Из (1) BD/AM=4 и BD=4AM = 2AC. Из (2) BP/PC=2. ВМ - медиана и по ее свойствам Sabm=Scbm. Треугольники АВК и АКМ - треугольники с общей высотой к стороне ВМ. Значит Sabk/Sakm=4/1. => Sabk=Sabc*(1/2)*(4/5)=(2/5)*Sabc. Sakm=Sabc*1/(2*5)=(1/10)*Sabc. Треугольники ABP и APC - треугольники с общей высотой к стороне ВC. Значит Sabp/Sapc=2/1. => Sapc=Sabc*1/3=(1/3)*Sabc. Тогда Skpcm=Sapc-Sakm = (1/3)*Sabc-(1/10)*Sabc = (7/30)*Sabc. Sabk/Skpcm=(2/5)/(7/30)=12/7.
2. 4+7=11 (частей) Одна часть: 44/11 = 2 Большее основание равно: 2*4=8 см Меньшее основание равно: 2*7=14 см
3. Диагонали делят острые углы трапеции пополам => получаем ромб, у которого все стороны равны 8 см. Р=8+8+8+10=34 см
4. Имеем трапецию ABCD. Основания - AD, BC. Диагонали пересекаются в точке P. MN - средняя линия, пересекаемая сторону BD в точке О и AC в точке K. В треугольнике ABC средняя линия MK равна 1/2*BC, а средняя линия KN в треугольнике ACD = 1/2*AD. Треугольник BCP одновременно прямоугольный и равнобедренный, соответственно высота, опущенная из точки P к вершине, является медианой. Она равна 1/2*BC. В треугольнике APD, высота, опущенная из точки P, - медиана. Равна 1/2*AD. Что и требовалось доказать.
Гипотенуза больше любого из двух катетов (является больше стороной)
Сумма двух углов равна 90 градусов
Катет лежащий против угла 30 градусов равен половине гипотенузы