ответ: площадь равна пи (или просто п)
Объяснение:
1) построим треугольник, нижний катет 3, боковой 4. Впишем окружность, проведем радиусы к катетам. Соединим вершину катета в 3 с центром окружности. Получатся два подобных треугольника: их катеты равны по радиусу, другие - неизвестны (будут равны), обозначим их за Х.
2) в пересчете получим, что нижний катет основного треугольника делится радиусом на 3-Х и Х, гипотенуза на Х и 5-Х (гипотенуза равна 5 - египетский треугольник), боковой катет - на 5-Х и 4-5+Х
3) составим уравнение Х-1=3-Х, откуда Х=2. подставим, получим, что у прямоугольника, образованного двумя радиусами к катетам основного треугольника и частями основных катетов, составляющих прямой угол, две соседние стороны образуют прямой угол + равны , значит это квадрат, значит радиус равен 1( стороны этого маленького треугольника равны 1)
4) площадь окружности п*(r^2)=п*1=п
ответ: площадь равна пи (или просто п)
Объяснение:
1) построим треугольник, нижний катет 3, боковой 4. Впишем окружность, проведем радиусы к катетам. Соединим вершину катета в 3 с центром окружности. Получатся два подобных треугольника: их катеты равны по радиусу, другие - неизвестны (будут равны), обозначим их за Х.
2) в пересчете получим, что нижний катет основного треугольника делится радиусом на 3-Х и Х, гипотенуза на Х и 5-Х (гипотенуза равна 5 - египетский треугольник), боковой катет - на 5-Х и 4-5+Х
3) составим уравнение Х-1=3-Х, откуда Х=2. подставим, получим, что у прямоугольника, образованного двумя радиусами к катетам основного треугольника и частями основных катетов, составляющих прямой угол, две соседние стороны образуют прямой угол + равны , значит это квадрат, значит радиус равен 1( стороны этого маленького треугольника равны 1)
4) площадь окружности п*(r^2)=п*1=п
усть скорость первого автомобилиста равна x км/ч, а длина пути равна s км [величина s введена для удобства, она потом сократится]. тогда скорость второго автомобилиста на 1-й половине пути равна x-15 км/ч. время, за которое 1-й автомобилист проехал весь путь равно t1 = s/x.второй автомобилист проехал 1-ю половину пути за время t2_1 = (s/2): (x-15) = s/(2*(x- а вторую половину пути – за время (s/2)/90 =s/180; время всюду измеряется в часах. по условию, t1 = t2_1+t2_2. получаем уравнение:
s/x = s/(2*(x-15)) + s/180
сократим (как и было обещано j ) на s и решим уравнение.
1/x = 1/(2*(x-15)) + 1/180 (2)
2*(x-15)*180 = 180*x + 2*(x-15)*x
(x-15)*180 = 90*x + (x-15)*x
180*x – 15*180 = 90*x + x2 – 15*x
180*x – 15*180 = 90*x + x2 – 15*x
x2 + (90-15 – 180)*x +15*180 = 0
x2 — 105*x +15*180 = 0
решим полученное квадратное уравнение.
d = 1052 – 4*15*180 = (7*15)2 – 4*15*(15*12) =
= 152*(72 – 4*12) = 152*(49 – 48) = 152
следовательно, уравнение (2) имеет 2 корня:
x1 = (105+15)/2 = 60; x2 = (105-15)/2 = 45
так как x> 54, то x=60
ответ 60