1 B поделит сторону AC пополам. Рассмотрим треугольник ABM, в этом треугольнике AB = 95, AM =57, Тогда по теореме Пифагора: BM^2 = AB^2 - AM^2 => BM = корень из (AB^2 - AM^2) = корень из (9025 - 3249) = корень из (5776) = 76. ответ : BM = 76 2 Решение: cosA=AC/AB AC - известно... находим АB. АB - гипотенуза AB=√(AC²+CB² AB=√(4+60)=8 cosA=AC/AB=2/8=1/4=0.25 ответ: cosA=0.25 3 Δ АВС - равнобедренный, т.к. АС = ВС. => , что высота СН, проведенная к стороне АВ, является также медианой и делит сторону АВ на две равные части. СН² = АС² - (АВ : 2)² СН² = 5² - (2√21 : 2)² = 25 - 21 = 4 СН = √4 = 2 sin А = СН/АС = 2/5 = 0,4
2. Гипотенуза 8+2=10 см Нужно найти катет, допустим катет "а"
а²=с²-в²=100-64=36 а=6
3. Найдём ещё 1 катет, допустим "в" в²=с²-а²=(25-15)(25+15)=10×40=400 в=
Sabc = a×в:2=20×15:2=300:2=150 см²
4. В треугольнике нет диагоналей, там либо биссектрисы, либо высоты, либо медианы.
5. Диагонали (*) пересечения делятся пополам => 12:2=6 - одна половина диагонали, например ОС. Получаем прямоугольный треугольник найдём катет этого треугольника c=10, a=6, в-? в²= 100-36=64 в= Отсюда находим вторую диагональ 8+8=16 см Sabcd=d1 × d2 :2= 16×12:2=192:2=96 см²
6. Т. к. у нас есть высота => у нас получается параллелограм (АВСЕ, СЕ-высота) Значит, ВС=АЕ=15 как противоположные стороны в параллелограме Теперь можем найти ЕD=АD-АЕ=36-15=21 Рассмотрим треугольник СЕD - прямоугольный. По теореме Пифагора с²=а²+в² Нам нужно найти СD - большая боковая сторона, гипотенуза прямоугольного треугольника с²= а²+в²= 21²+20²=441+400=841 с= с=29 см
Единственное, я не писала ответы и не называла стороны, на случай, если у тебя свои названия
Ясно, что из одной точки можно провести к плоскости сколько угодно лучей как под равным, так и под разным углом, и точки их пересечения с плоскостью могут располагаться в разных ее частях, не обязательно на одной прямой. Сделаем рисунок. Рассмотрим ∆ А1ОВ1. Так как АВ и А1В1 расположены в параллельных плоскостях и лежат в плоскости ∆ А1ОВ1, АВ║А1В1. ⇒ соответственные углы этих треугольников образованные пересечением параллельных прямых и секущей равны, и ∆ АОВ~∆ A1OB1 На том же основании ВС║В1С1 и АС║А1С1⇒ ∆ АВС и ∆ А1В1С1 подобны. Из подобия следует: А1О:АО=14:10=k k=1,4⇒ А1В1=2•1,4=2,8 см B1C1=3•1,4=4,2 см A1C1=4•1,4=5,6 см Периметр ∆ А1В1С1=2,8+4,2+5,6=12,6 см
2 Решение: cosA=AC/AB
AC - известно... находим АB. АB - гипотенуза
AB=√(AC²+CB²
AB=√(4+60)=8
cosA=AC/AB=2/8=1/4=0.25
ответ: cosA=0.25
3 Δ АВС - равнобедренный, т.к. АС = ВС. => , что высота СН, проведенная к стороне АВ, является также медианой и делит сторону АВ на две равные части.
СН² = АС² - (АВ : 2)²
СН² = 5² - (2√21 : 2)² = 25 - 21 = 4
СН = √4 = 2
sin А = СН/АС = 2/5 = 0,4