1) Дано:
<СВА = <DBA
DB = CB.
Док-ть:
∆АСВ = ∆ADB
Док-во:
Рассмотрим ∆АСВ и ∆ADB.
АВ - общая сторона.
<СВА = <DBA, DB = CB, значит ∆АСВ = ∆ADB по | признаку (по двум сторонам и углу между ними).
5) Дано:
QK = FP, QM = MP, KM = MF
<KQM = <FPM
Док-ть:
∆QFM = ∆KMP;
∆QKM = ∆FMP;
∆QPK = ∆QPF;
∆KQF = ∆KFP;
Док-во:
QK = FP, QM = MP, KM = MF, значит КQFP - параллелограмм.
<KQM = <FPM
1) Рассмотрим ∆QFM и ∆KMP.
<KMP = <QMP как вертикальные
QM = MP, KM = MF, значит ∆QFM = ∆KMP по | признаку.
QF = KP по св-ву параллелограмма, значит ∆QFM = ∆KMP по ||| признаку.
∆QFM = ∆KMP по | и ||| признакам.
2) Рассмотрим ∆FMP и ∆QMK.
<FMP = <QMK как вертикальные.
QK = FP, KM = MF, QM = MP, значит ∆FMP = ∆QMK по | и ||| признакам.
3) Рассмотрим ∆KQP и ∆QFP.
QK = FP, QP - общая сторона
KP = QF по св-ву параллелограмма.
<KQM = <FPM
<QKP = <QFP по св-ву параллелограмма, значит ∆KQP = ∆QFP по | , || , ||| признакам.
4) Рассмотрим ∆KQF и ∆KFP.
KF - общая сторона.
QK = FP, QF = KP.
<KQF = <FPK.
∆KQF и ∆KFP по | , || , ||| признакам.
ч.т.д
Дано:
усеченный конус
r = O₁B = 5 см
R = OA = 11 см
см
-----------------------------
Найти:
Sсеч - ?
1) Проведем BH⊥AO.
OH = O₁B = r = 5 см
AH = OA - OH = R - r = 11 см - 5 см = 6 см
2) Рассмотрим ΔAHB:
BH⊥AO | ⇒ ΔAHB - прямоугольный
∠AHB = 90° |
AB² = AH² + HB² - по теореме Пифагора, следовательно:
h = BH = OO₁ = 8 см
3) Равнобедренная трапеция ABCD является осевым сечением данного усеченного конуса: 
4) В трапеции ABCD:
AD = 2AO = 2R = 2×11 см = 22 см h = BH= 8 см
BC = 2BO₁ = 2r = 2×5 см = 10 см
5) Тогда площадь трапеции равна:
⇒
Sсеч =
= 128 см²
ответ: Sсеч = 128 см²
P.S. Рисунок показан внизу↓
AOD - прямоугольный треугольник.
ОР - высота из прямого угла в треугольнике AOD.
ОР=√(АР*РD)=√(6√3*2√3)=6см.
По Пифагору АО=√(АР²+ОР²)=√(108+36)=12см.
R=AJ=JO=JP = АО/2 = 6см.
Площадь круга Sк=π*R²=36π.
В прямоугольном треугольнике АРО катет ОР равен половине
гипотенузы АО, значит <PAO=30°,
<РАК=60° (так как АО - биссектриса <PAK) => дуга РОК=120°.
<PJK=120°(центральный угол, опирающийся на дугу РОК).
РН=0,5*АР=3√3см (катет против угла 30°).
AH=√(АР²-РH²)=√(108-27)=9см.
Площадь треугольника АКР равна
Sapk=AH*PH=9*3√3=27√3см².
Площадь сегмента КОР равна
Skop=(R²/2)*(π*α/180 -Sinα) - формула.
В нашем случае α=<PKJ =120°.
Skop=(36/2)*(π*120/180 -√3/2)
Skop=(12π-9√3)см².
Искомая площадь равна
S=Sк-Sapk-Skop = 36π-27√3-12π+9√3 = (24π-18√3)см².