На отрезке ав выбрана точка с так что ас=80; вс=2 построена окружность с центром а,проходящая через точку с. найдите длину отрезка касательной проведённой из в к этой окружности
Если из точки, лежащей вне окружности, проведены касательная и секущая, то квадрат длины касательной равен произведению секущей на ее внешнюю часть АС это радиус окружности. Длина секущей, проведённой из точки В равна 80+80+2=162. Длина внешней части секущей равна 2. K^2=162*2=324 K=18
перед решением нужно ещё и довольно громоздкое доказательство
площадь боковой поверхности равна произведению высоты боковой грани на полупериметр основания. Но нужно доказать, что высоты у всех граней равны. Кроме того нужно доказать, что высота пирамиды проходит через центр вписанной окружности.
Здесь, по сути три задачи.
Площадь основания по формуле Герона = 48 кв.см радиус вписанной окружности = площадь/п.периметр=48/16=3см высота бок.грани = радиус/cos45=3√2 площ.боковая=3√2 * 16=48√2 ну и для полной добавить найденную площадь основания. Для полного понимания, если вдруг захочется разобраться, читайте Атанасяна 2001, Геометрия-10, задачи 246-248
Попробую стать лаской. Хотя обычно я злой, очень злой.
Давай попробуем рассуждать логически. В маленьком треугольнике, отсекаемом от заданного высотой, нам даны катет 12 (он равен высоте большого), и гипотенуза 24 (она равна катету большого). Из этого можем найти второй катет маленького, назовём его банальной буквой х. По теореме Пифагора, х^2 = 24^2 - 12^2 = 432 х = корень(432) = 12*корень(3).
теперь нам нужно заметить, что маленький и большой треугольники подобны по трём углам (у них обоих имеется прямой угол, и ещё один из острых углов у них общий). При этом у большого треугольника катет дан 24 см, а у маленького мы нашли в предыдущем действии 12*корень(3). Значит можем составить пропорцию.
Назовём гипотенузу большого треугольника, которую нужно найти банальной буквой у. Тогда у / 24 = 24 / (12*корень(3)) Отсюда у = 24 * 24 / (12*корень(3)) = 48 / корень(3) = 16*корень(3) Если угодно в цифрах, то 16 * 1,732 = примерно 27,71 см
Ну так у меня получилось. Уж не знаю обманул тебя или правду сказал.
АС это радиус окружности.
Длина секущей, проведённой из точки В равна 80+80+2=162.
Длина внешней части секущей равна 2.
K^2=162*2=324
K=18