ответ:. Р=22см
Объяснение: Обозначим вершины треугольника как А В С, а точки касания Д,К,М, причём Д лежит на АВ, К лежит на ВС; М на АС. Стороны треугольника являются касательными к вписанной окружности и, отрезки касательных, соединяясь в одной вершине равны от вершины до точки касания. Поэтому ВД=ВК=7см; АД=АМ=2см; СК=СМ=2см; отсюда следует что
АМ=СМ=2см. Теперь найдём стороны треугольника, сложив эти отрезки:
АВ=ВС=2+7=9см; АС=2+2=4см. Теперь найдём периметр треугольника зная его стороны: Р=9+9+4=22см
Сечением будет равнобедренная трапеция, т.к. основания призмы лежат в параллельных плоскостях, то секущая плоскость их будет пересекать по параллельным прямым.
Пусть К и М середины рёбер АС и ВС, тогда МК средняя линия, по свойству она параллельна третьей стороне АВ и равна её половине - 4 см (стороны основания равны по 8см)
Секущая плоскость проходит через точку А1 и параллельна МК, т.е. совпадает с А1В1 (МК II АВ II А1В1). А1В1МК - трапеция с основаниями А1В1=8см и МК=4см
Боковые стороны равны из равенства прямоугольных треугольников АА1К и ВВ1М (по двум катетам). А1К и В1М - гипотенузы этих треугольников. Их находим по теореме Пифагора √3²+4²=√9+16=√25=5см.
Р=4+8+2·5=22см