Спримером. из точки, расположенной на расстоянии 4√3 см от плоскости, к ней проведена наклонная образующая с плоскостью угол 60 градусов. найдите длину наклонной. a)5 cm b)8 cm c)8√3 cm d)5√3 cm e)15 cm
Основанием прямого параллелепипеда ABCDA₁B₁C₁D₁ является параллелограмм ABCD, стороны которого равны а и 2а, острый угол равен 45°. Высота параллелепипеда равна меньшей высоте параллелограмма. Найдите: а) меньшую высоту параллелограмма; б) угол между плоскостью АВС₁ и плоскостью основания; в) площадь боковой поверхности параллелепипеда; г) площадь поверхности параллелепипеда. -------- Пусть в параллелограмме ABCD, стороны которого равны а и 2а, сторона АВ=СD=а и ВС=АD=2а 1) меньшая высота параллелограмма идет из вершины тупого угла D к большей стороне ВС и отрезает от него равнобедренный прямоугольный треугольник с катетами DН=СН=СD*sin(45°)=(а√2):2=а/√2 Найдя меньшую высоту основания, мы нашли высоту параллелепипеда, равную ей по условию. СС₁=DН=а/√2
2) Угол между плоскостью АВС1 и плоскостью основания: . Проведем из С1 перпендикуляр к продолжению АВ и точку пересечения обозначим Е. По теореме о 3-х перпендикулярах С₁Е ⊥ АЕ. Угол СЕC₁ - искомый. Так как тупой угол параллелограмма ABCD равен 180°-45°=135°, ∠ СВЕ=45° ( еще и потому, что эти углы накрестлежащие при пересечении параллельных СD и ВА секущей СВ). Отсюда СЕ=ВЕ=СВ*sin(45°)=2а*(√2):2=а√2 tg ∠CЕC₁=СС₁:СЕ=а/√2):(а√2)=1/2 ∠ СЕC₁=arctg 1/2 ,
3) Площадь боковой поверхности параллелепипеда равна произведению его высоты на периметр основания. Sбок=2*(а+2а)*СС1=6а*а/√2=3а²√2
4) Площадь поверхности параллелепипеда равна сумме площади боковой поверхности и удвоенной площади основания ( т.к. оснований два).
Удвоенная площадь основания 2S осн=2*BC*СD*sin(45°) =2*2a*а*(√2):2=4a²(√2):2= 2a²√2 Sполн=3а²√2+2a²√2=5а²√2 --- [email protected]
Основанием прямого параллелепипеда ABCDA₁B₁C₁D₁ является параллелограмм ABCD, стороны которого равны а и 2а, острый угол равен 45°. Высота параллелепипеда равна меньшей высоте параллелограмма. Найдите: а) меньшую высоту параллелограмма; б) угол между плоскостью АВС₁ и плоскостью основания; в) площадь боковой поверхности параллелепипеда; г) площадь поверхности параллелепипеда. -------- Пусть в параллелограмме ABCD, стороны которого равны а и 2а, сторона АВ=СD=а и ВС=АD=2а 1) меньшая высота параллелограмма идет из вершины тупого угла D к большей стороне ВС и отрезает от него равнобедренный прямоугольный треугольник с катетами DН=СН=СD*sin(45°)=(а√2):2=а/√2 Найдя меньшую высоту основания, мы нашли высоту параллелепипеда, равную ей по условию. СС₁=DН=а/√2
2) Угол между плоскостью АВС1 и плоскостью основания: . Проведем из С1 перпендикуляр к продолжению АВ и точку пересечения обозначим Е. По теореме о 3-х перпендикулярах С₁Е ⊥ АЕ. Угол СЕC₁ - искомый. Так как тупой угол параллелограмма ABCD равен 180°-45°=135°, ∠ СВЕ=45° ( еще и потому, что эти углы накрестлежащие при пересечении параллельных СD и ВА секущей СВ). Отсюда СЕ=ВЕ=СВ*sin(45°)=2а*(√2):2=а√2 tg ∠CЕC₁=СС₁:СЕ=а/√2):(а√2)=1/2 ∠ СЕC₁=arctg 1/2 ,
3) Площадь боковой поверхности параллелепипеда равна произведению его высоты на периметр основания. Sбок=2*(а+2а)*СС1=6а*а/√2=3а²√2
4) Площадь поверхности параллелепипеда равна сумме площади боковой поверхности и удвоенной площади основания ( т.к. оснований два).
Удвоенная площадь основания 2S осн=2*BC*СD*sin(45°) =2*2a*а*(√2):2=4a²(√2):2= 2a²√2 Sполн=3а²√2+2a²√2=5а²√2 --- [email protected]
наклонная - гипотенуза
берем отношение синуса (противолежащий катет к гипотенузе)
sin60=4√3 / гипотенузу
√3/2 =4√3 / гипотенузу
гипотенуза = 8