Для нахождения стороны треугольника через медиану к ней и 2 другие стороны существует формулы: m^2=2a^2+2b^2-c^2/4, где c - сторона, к которой проведена медиана. Следовательно, выразим с: c=√2a^2+2b^2-4m^2 c=√2*36+2*64-4*25 c=√100=10 (см) Зная все стороны треугольника, площадь можно найти по формуле Герона: S=√p(p-a)(p-b)(p-c), где p - половина периметра треугольника, a, b, c - его стороны; p=a+b+c/2=6+8+10/2=12 S=√12*2*4*6=12*2=24 (см^2) ответ: 24 см^2.
BC = 19; KH = 10; Рассмотрим треугольники AKB и BKM (на рисунке одинаковыми цветами отмечены равные углы). Поскольку у них равны два угла, то у них равны и третьи. Т.е ∠BKA = ∠BKM = 180°/2 = 90°. Значит биссектрисы пересекаются под прямым углом. Δ ABN - равнобедренный. Значит BK = KN, в силу того, что AK - медиана. Также Δ ABM равнобедренный. Значит AK = KM; Δ AKN = Δ BKM по двум сторонам и углу между ними. В равных треугольниках равны соответствующие элементы, значит высоты TK и KE равны. Треугольники HBK и TBK равны по углу и общей гипотенузе. Следовательно HK = KT = KE; Теперь найдем площадь S. S = BC*(TK+KE) = 2*BC*HK = 2*19*10 = 380
Параллелограмм АВСД: АВ=СД, ВС=АД=2 АР - биссектриса угла А (<ВАР=<ДАР) ВМ- биссектриса угла В (<АВМ=<СВМ) ΔВАР - равнобедренный АВ=ВР, т.к. углы при основании <ВАР=<ВРА (<ВРА=<ДАР как накрест лежащие углы) ΔАВК=ΔРВК по двум сторонам (ВК-общая, АВ=ВР) и углу между ними (<АВК=<РВК по условию) .Аналогично ΔАВК=ΔАМК по двум сторонам (АК-общая, АВ=АМ) и углу между ними (<ВАК=<МАК по условию) Следовательно, в этих 3 равных треугольниках равны и высоты h=1 (расстояние от точки К до стороны АВ, или ВР, или АМ). Значит высота параллелограмма равна Н=2h=2*1=2 Площадь Sавсд=Н*АД=2*2=4
m^2=2a^2+2b^2-c^2/4, где c - сторона, к которой проведена медиана.
Следовательно, выразим с:
c=√2a^2+2b^2-4m^2
c=√2*36+2*64-4*25
c=√100=10 (см)
Зная все стороны треугольника, площадь можно найти по формуле Герона:
S=√p(p-a)(p-b)(p-c), где p - половина периметра треугольника, a, b, c - его стороны; p=a+b+c/2=6+8+10/2=12
S=√12*2*4*6=12*2=24 (см^2)
ответ: 24 см^2.