6•8:2=24см квадратных. Пояснение: чтобы найти площадь треугольника надо найти площадь прямоугольника, который состоит из двух таких треугольников и разделить на 2 ( т.к. Треугольника два). Удачи!
1) Если один угол равнобокой трапеции 63°, то и другой, противоположный угол будет 63°. Сумма внутренних углов трапеции = 360°. Теперь, у нас есть две стороны, найдём остальные 2: 63+63=126° - это сумма двух углов 180-126=54 - это сумма двух других углов 54:2=27 - это два других угла И того, углы трапеции равны 63;63;27;27 2) А вот у прямоугольной же трапеции имеются два угла по 90°, а также, у нас есть ещё один угол, равный 63°. Находим 4-ый угол: 90+90+63+х=360 243+х=360 х=117° Углы прямоугольной трапеции равны 90;90;63;117
ВН=h -высота параллелограмма, ВD - другая диагональ параллелограмма. Пусть одна часть равна х, тогда по условию АМ=3х, МD=2х. Диагональ ВD делит его на два равных треугольника, площади которых также равны, S(АВD)=S(ВСD)= 30 см². Высота ВН разделила ΔАВD на два треугольника с одной высотой h. Определим площадь каждого из этих треугольников. S(АВН)=0,5·АМ·ВМ=0,5·3х·h=1,5хh. S(ВМН)=0,5·МD·ВН=0,5·2х·h=хh Сумма площадей этих треугольников равна площади ΔАВD=30 см². 1,5хh+хh=30, 2,5хh=30, h=30/2,5х=12/х. Вычислим площадь ΔАВМ. S(АВМ)=0,5·АМ·h=0,5·3х·12/х=0,5·3·12=18 см². ответ: 18 см².
см2