Из условия задачи следует, что угол при основании треугольника АВС равен 30 град. Обозначим сторону равнобедренного треугольника через а, основание через b, радиус описанной окружности через R. Половина основания b/2=а*cos(30)=a*sqr(3)/2, b=a*sqr(3) Известно, что: R=a^2/sqr(4a^2-b^2) Подставив значение b, получим: R=a Отсюда: АВ=2 см Во второй задаче центр вписанной окружности совпадает с точкой пересечения биссектрис, поскольку радиусы опущенные из центра в точки М, Т и Р, образуют пары равных прямоугольных треугольников (ВОМ и ВОТ и т.д.). Четырехугольник РОТС является квадратом, так как радиусы проведены в точки касания и перпендикулярны катетам. По условия диагональ этого квадрата равна корень из 8, следовательно сторона будет в корень из двух раз меньше, отсюда: r=sqr(8/2)=2 Угол ТОР=90 град. Угол ТМР является вписанным, он измеряется половиной дуги, на которую опирается. Дуга составляет 90 градусов, так как ограничена точками Р и Т, а угол РСТ прямой. Следовательно угол ТМР=45 град.
ABCD-равнобед трапеция. Диагональ делит ее на два треуг-ка, средняя линия трапеции есть средние линии этих треугольников. В одном она равна x, значит основание одно 2x, в другом x+8, значит второе основание 2x+16. Если из тупых углов опустить высоты к большему основанию , то то они отсекут от него по 8 см с каждой стороны. Р/м треугольник, у которого 8см это катет, в высота второй катет, а гипотенуза-боковая сторона трапеции. Один угол 90, другой при основании 60, значит третий 30, напротив него сторона равная 8, значит гипотенуза равна 16. Р=2x+16+16+2x+16=72; 4x=24;x=6. Большее основание =2x6+16=12+16=28
элементарная арифметика же