Очень смешная задачка, меня порадовала. Пусть точка пересечения упомянутых в условии отрезков - это точка M. Предположим, что я построил плоскость ACM. Тогда центр окружности, вписанной в треугольник BCD, лежит в этой плоскости (потому что этот центр лежит на прямой AM), и следовательно, в этой плоскости лежит биссектриса угла BCD. Точно также, в этой плоскости ACM лежит центр окружности, вписанной в треугольник ABD (как "конец" отрезка CM), и, следовательно, в плоскости ACM лежит биссектриса угла DAB. Ну, значит, эти биссектрисы имеют общую точку (конец) на отрезке BD. Что означает, в частности, что AD/AB = CD/CB; AD = AB*CD/CB = 8*7/5 = 11,2
Я кучу времени потратил, пытаясь выяснить, не являются ли стороны тетраэдра касательными к одной сфере, но это оказалось ложным следом (и неверно!)
1) Противолежащие стороны параллелограмма равны. Противолежащие углы параллелограмма равны(так как у равных треугольников соответственные углы равны) . ДОКАЗАТЕЛЬСТВО:Проведя диагональ BD, мы получим два треугольника ABC и BCD, которые равны, так как у них BD - общая сторона, Р1=Р4 и Р2=Р3 (как накрест лежащие при параллельных прямых). Из равенства треугольников следует равенство противоположных сторон и углов. 2) Противоположные стороны попарно равны: AB = CD, AD = BC. Противоположные углы попарно равны: ∠A = ∠C, ∠B = ∠D. Диагонали делятся в точке их пересечения пополам: AO = OC, BO = OD. Сумма соседних углов равна 180 градусов: ∠A + ∠B = 180, ∠B + ∠C = 180, ∠C + ∠D = 180, ∠D + ∠A = 180. Противоположные стороны попарно равны и параллельны: AB = CD, AB || CD. Сумма расстояний между серединами противоположных сторон выпуклого четырехугольника равна его полупериметру. Противоположные стороны попарно параллельны: AB || CD, AD || BC. 3) вроде у которого все стороны равны 4) Трапеция — четырёхугольник, у которого только одна пара противолежащих сторон параллельна. 6) Равнобедренная когда равны боковые стороны. Прямоугольная имеет прямой угол.
58°, 122°, 122°
Объяснение:
Пусть дан параллелограмм КМРТ, ∠К=58°. Тогда и ∠Р=58°, т°.к. противоположные углы параллелограмма равны.
Сумма углов параллелограмма, прилегающих к одной стороне, составляет 180°, поэтому ∠М=∠Т=180-58=122°