При центральной симметрии отрезок отображается в равный и параллельный ему отрезок.
Стороны шестиугольника А₁А₂ и А₄А₅ равны и параллельны, значит эти отрезки центрально-симметричны. Центр симметрии - точка пересечения отрезков А₁А₄ и А₂А₅ - точка О. По определению центральной симметрии точка О - середина этих отрезков.
Аналогично, отрезки А₂А₃ и А₅А₆ центрально-симметричны относительно точки пересечения отрезков А₂А₅ и А₃А₆, которая является их серединой. Но середина отрезка А₂А₅ - точка О, значит точка О и середина отрезка А₃А₆. Итак, все диагонали пересекаются в одной точке.
1) Найдем катет СВ по теореме Пифагора.
СВ =3корень18
2)tg A= СВ/АС
tg A= 3корень18/ 3
tg A= корень18