Гомоте́тия (от др.-греч. ὁμός «одинаковый» + θετος «расположенный») — преобразование плоскости (или пространства), заданное центром O и коэффициентом {\displaystyle k\neq 0}k\neq 0, переводящее каждую точку {\displaystyle X}X в точку {\displaystyle X'}X' такую, что {\displaystyle {\overrightarrow {OX'}}=k{\overrightarrow {OX}}}\overrightarrow {OX'}=k\overrightarrow {OX}. При этом центр остаётся на месте. Гомотетию с центром O и коэффициентом k часто обозначают через {\displaystyle H_{O}^{k}}H_{O}^{k}.
Объяснение:
Властивості Редагувати
Особливість правильного шестикутника — рівність його сторони і радіуса описаного навколо нього кола, оскільки {\displaystyle 2\sin {\frac {\pi }{6}}=1}{\displaystyle 2\sin {\frac {\pi }{6}}=1}.
Усі кути правильного шестикутника дорівнюють 120°
Радіус вписаного кола дорівнює:
{\displaystyle r={\frac {\sqrt {3}}{2}}t}{\displaystyle r={\frac {\sqrt {3}}{2}}t}.
Радіус описаного кола дорівнює:
{\displaystyle R=t}{\displaystyle R=t}.
Периметр правильного шестикутника дорівнює
{\displaystyle P=6R=4{\sqrt {3}}r}{\displaystyle P=6R=4{\sqrt {3}}r}.
Площа правильного шестикутника розраховується за формулами:
{\displaystyle S={\frac {3{\sqrt {3}}}{2}}R^{2}}{\displaystyle S={\frac {3{\sqrt {3}}}{2}}R^{2}},
{\displaystyle S=2{\sqrt {3}}r^{2}}{\displaystyle S=2{\sqrt {3}}r^{2}}.
Найдовша діагональ правильного шестикутника вдвічі довша за його сторону.