Радиус описанной окружности прямоугольного треугольника равен половине гипотенузы. Данный треугольник Пифагоров и гипотенуза равна 5см.
Точка М - центр описанной окружности.
Точка О - центр вписанной окружности.
Тогда R=2,5см, то есть ВМ=2,5см.
Радиус вписанной окружности равен по формуле:
r=(AC+BC-АВ)/2 = 2/2=1см.
Итак, СН=r=1см => HB=3-1=2см.
PB=HB=2см (касательные из одной точки).
Тогда МР=2,5-2=0,5см. В прямоугольном треугольнике ОМР по Пифагору:
ОМ=√(1²+0,5²)= √1,25 ≈ 1,118 ≈ 1,12см .
ответ: расстояние между центрами окружностей равно
√1,25 ≈ 1,12 см.
Или так: по теореме Эйлера в треугольнике расстояние между центрами вписанной и описанной окружностей находится по формуле:
d² = R² - 2·R·r.
В нашем случае R = 2,5см, а r = 1cм.
тогда d = √(2,5² -2·2,5) = √(2,5·0,5) = √1,25 ≈ 1,12 см.
Плоскость и третья сторона треугольника параллельны.
Объяснение:
Отрезок, соединяющий середины двух сторон треугольника называется средней линией треугольника. Средняя линия треугольника параллельная третьей его стороне.
Так как если две точки прямой принадлежат плоскости, то и прямая проходящая через эти точки лежит в этой плоскости, то средняя линия лежит в плоскости, проходящей через середины двух сторон треугольника. Но средняя линия треугольника параллельна третьей стороне треугольника, тогда по признаку параллельности прямой и плоскости, третья сторона треугольника параллельна плоскости, проходящей через середины двух его сторон.
Вторая замечательная точка треугольника — точка пересечения серединных перпендикуляров сторон треугольника
Третья замечательная точка треугольника — точка пересечения медиан
Четвёртая замечательная точка треугольника — точка пересечения высот треугольника