Дана правильная треугольная призма, сторона основания которой равна a. через середины двух сторон a и c основания проведена плоскость под углом в 60 градусов к основанию, которая пересекает боковое ребро в точке b. найти площадь сечения abc.
Пусть ЕКМЕ1К1М1 - призма. Точки А, В и С принадлежат ЕМ, ЕК и ЕЕ1 соответственно. В тр-ке ЕКМ АВ - средняя линия, АВ=а/2, значит треугольник правильный. В нём ЕН - высота на сторону АВ. ЕН=ЕА·sin60=a√3/4. В прямоугольном тр-ке ЕСН ∠ЕНС=60° (по условию), СН=ЕН·cos60=a√3/2. Площадь тр-ка АВС: S=АВ·СН=(а/2)·(а√3/2)=а²√3/4 (ед²) - это ответ.
Построение ясно из рисунка. Поскольку плоскость проходит через точки В,С и М, значит она проходит через среднюю линию MN грани АСD, параллельную ребру ВС. Продлим прямые ВМ и СN до их пересечения в точке Р. Треугольник ВРС равнобедренный, следовательно вершина S пирамиды SBPC спроецируется на высоту PF основания ВРС, являющуюся и медианой основания, в точке Н. Расположение точки Н на прямой PF зависит от угла SQF между плоскостями ВРС и АSВ. В нашем случае этот угол тупой, поэтому точка Н лежит вне грани АSD пирамиды SABCD.
Так как пирамида правильная, в основании - квадрат. Диагональ квадрата равна в нашем случае 6√2. Ее половина ОС=3√2. Высота пирамиды по Пифагору SO=√(SC²-OC²)=√(144-18)=3√14. Необходимо найти перпендикуляр SH к плоскости BCMN. Вариант решения - через подобие прямоугольных треугольников SHE и FOE по равным острым углам при вершине Е. Углы SHE и EOF - прямые. Из этого подобия имеем соотношение: SH/FO=SE/EF и SH=FO*SE/EF. Высота пирамиды SO=3√14 (по Пифагору из треугольника SOC). Тогда QG=0,5*SO (так как MN - средняя линия треугольника ASD, и значит QG - средняя линия треугольника KSO). Из подобия треугольников QGF и EOF имеем ЕО=FO*QG/FG. FO=3, QG=1,5√14, FG=4,5. Тогда ЕО=3*1,5√14/4,5=√14 и, следовательно, SE=SO-EO=2√14. EF находим из треугольника EOF по Пифагору: EF=√(OF²+OE²)=√(9+14)=√23. Тогда SH=3*2√14/√23. ответ: SH=6√14/√23.
В тр-ке ЕКМ АВ - средняя линия, АВ=а/2, значит треугольник правильный. В нём ЕН - высота на сторону АВ. ЕН=ЕА·sin60=a√3/4.
В прямоугольном тр-ке ЕСН ∠ЕНС=60° (по условию), СН=ЕН·cos60=a√3/2.
Площадь тр-ка АВС: S=АВ·СН=(а/2)·(а√3/2)=а²√3/4 (ед²) - это ответ.