пусть авс-прямоугольный треугольник. тогда гипотенуза ас=17 см. пусть медиана выходит из точки а пусть аm — медиана(тогда bm=cm) обозначим катет bc через y, ac через x, тогда bm=cm=y\2,по теореме пифагора получаем систему и з двух уравнений первое х^2+y^2=17^2 второе x^2+(y\2)^2=15^2 отняв от первое второе получаем 3\4*(y^2)=64 y^2=256\3 y=(+\-)16\корень(3)=(+\-)16\3*корень(3) нас удовлетворяет только положительный корень(длина катета не может быть отрицательным числом), так что y=16\3*корень(3) подставив найденное значение y в первое уравнение находим х х^2+y^2=17^2 х^2+256\3=17^2 х^2=611\3 х=(+\-)корень(611\3) (нас удовлетворяет только положительное значение по той же причине что и выше) х=корень(611\3)ответ корень(611\3) и 16\3*корень(3) катеты треугольника
угол DАВ =60 градусов
Объяснение:
Рассмотрим треугольник ОСВ, в нем ОС=ОВ как радиусы, значит он как минимум равнобедренный, а у равнобедренного треугольника углы при основании равны. Значит угол ОВС=ОСВ=60 градусов. Но если в треугольнике 2 угла по 60, то и третий угол СОВ= 60 градусов, потому что сумма углов в треугольнике 180, а 180 - (60+60) = 60. Значит этот треугольник равносторонний.
Рассмотрим треугольник АОВ, он равнобедренный, т.к. АО и ОВ радиусы. Угол АОВ смежный с углом СОВ, т.к. они образуют развернутый угол в 180 градусов,. Значит угол АОВ=180-СОВ=180-60=120 градусов.
Т.к. треугольник АОВ равнобедренный, углы при основании равны.
Угол ОАВ = углу ОВА. Их сумма= 180- угол АОВ=180-120=60
Значит каждый из них 60 : 2 = 30 градусов
Угол ОАD=90 градусов, т.к. ОА -это радиус к касательной АD.
Значит угол DАВ = 90 - угол ОАВ=90-30=60 градусов.
площадь бок.повер. = π*l*r, по условию высота есть
h=2*3=6 cm
Рассмотрим треугольник со сторонами h, l, r. он прямоугольный, по Th Пифагора получим l=√h²+r²=√6²+3²=6.7 cm
Sбок=3*6,7*π=20,1*π см²