1.найдите площадь полной поверхности цилиндра
РЕШЕНИЕ
альфа (a)
высота цилиндра Н=R*tg(a)
длина окружности основания L=2pi*R
площадь боковой поверхности Sбок=H*L=R*tg(a)*2pi*R=2pi*R^2*tg(a)
площадь основания Sосн=pi*R^2
площадь полной поверхности S=2Sосн+Sбок=2pi*R^2 +2pi*R^2*tg(a)=2pi*R^2(1+tg(a))
ответ 2pi*R^2(1+tg(a))
2.найдите площадь сечения призмы
РЕШЕНИЕ
площадь боковой поверхности Sбок=240 см
боковое ребро прямой призмы (высота) H= 10 см
периметр основания Р=Sбок/H=240/10=24 см
в основании РОМБ, сторона ромба b=P/4= 6 см
ромб с острым углом 60 градусов.-значит он состоит из двух равностороннних треугольников-, у которых одна сторона-это меньшая диагональ d=b= 6 см
меньшие дигонали и боковые ребра являются сторонами искомого сечения
площадь сечения ,проходящего через боковое ребро и меньшую диагональ основания. S=d*H=6*10=60 см2
ответ 60 см2
Можно просто в лоб решать, составить уравнение для высоты п-да (оно же - боковое ребро)
(17^2 - h^2)/(10^2 - h^2) = 5^2/2^2; откуда h^2 = (50^2 - 34^2)/(5^2 - 2^2) = 64; h = 8; d1^2 = 17^2 - h^2 = 225; d1 = 15; d2 = 10^2 - h^2 = 36; d2 = 6; V = 15*6*8/2 = 360;
А есть "хулиганское" решение :)) Среди уже первых Пифагоровых троек находим 2 с гипотенузами 10 и 17, и одинаковым катетом 8. Это (6, 8, 10) и (8, 15, 17). Легко видеть, что третьи члены этих троек - 6 и 15, относятся, как 6/15 = 2/5 :
Отсюда V = 15*6*8/2 = 360 :