Объяснение:
Воспользуемся формулой расстояния между двумя точками А и B на координатной плоскости с координатами А(х1;у1) и B(х2;у2):
|AB| = √((х1 - х2)² + (у1 - у2)²).
1) Найдем расстояние между точками A(-6;0) и B(0;8):
|AB| = √((-6 - 0)² + (0 - 8)²) = √((-6)² + (-8)²) = √(6² + 8²) = √(36 + 64) = √100 = 10.
Следовательно, расстояние между точками A(-6;0) и B(0;8) равно 10.
2) Найдем расстояние между точками M(8;0) и N(0;-6):
|MN| = √((8 - 0)² + (0 - (-6))²) = √((8)² + (-6)²) = √(8² +6²) = √(64 + 36) = √100 = 10.
P - точка пересечения биссектрис. Биссектриса внутреннего угла при параллельных отсекает равнобедренный треугольник.
AB=BP=PC=CD=3, BC=6
Опустим высоту BH на AD.
AH=(AD-BC)/2 =(8-6)/2 =1
BH=√(AB^2-AH^2) =√(9-1) =2√2
Точка M равноудалена от прямых AB, BC, CD, следовательно лежит на биссектрисах углов ABC и BCD. Эти биссектрисы делят равные углы пополам и образуют равнобедренный треугольник. MP - серединный перпендикуляр к BC.
В равнобедренном треугольнике ABP биссектриса BM является серединным перпендикуляром к AP. AM=PM, △BAM=△BPM по трем сторонам, ∠BAM=∠BPM=90.
MP пересекает AD в точке N.
∠MAN=90-∠BAD=∠ABH, △MAN~△ABH
MN/AH=AN/BH => MN=4/2√2 =√2