6 см
Объяснение:
1) Катет, лежащий против угла 30 градусов, равен половине гипотенузы.
АС - это катет прямоугольного треугольника АСD.
АС лежит против угла 30°, следовательно равен половине АD, которая является большим основанием трапеции:
АС = 24 : 2 = 12 см.
2) Треугольник АВС так же является прямоугольным.
В нём угол В = 90° согласно условию, а угол ВАС равен углу D, так как стороны этих углов взаимно перпендикулярны, а углы со взаимно перпендикулярными сторонами равны.
3) Катет ВС треугольника АВС лежит против угла 30°, следовательно равен половине гипотенузы АС:
ВС = 12 : 2 = 6 см.
4) В трапеции АВСD сторона ВС - это меньшее основание, которое надо было найти. Мы его нашли: ВС = 6см.
ответ: 6 см
АВСD - равнобокая трапеция, АС и ВD диагонали, по условию они перпендикулярны.
Проведите СК параллельно диагонали ВD. К лежит на продолжении АD. Получится треугольник АСК. Он прямоугольный, потому что угол АСК= углу АОD = 90 градусов. К тому же этот треугольник равнобедренный, потому что в нем СК=АС. FR - основание треугольника.
Проведите высоту этого треугольника с вершины С. Пусть это будет отрезок СМ.
Высота в равнобедренном треугольнике, проведенная к основанию, будет чем ? -медианой. Значит, М - середина АК. СМ = 1/2АК = 1/2(АD + DК)
а DК = ВС, как противоположные стороны параллелограмма ВСКD.
Тогда
СМ = 1/2(а + в)
А средняя линия как раз и равна 1/2(а+в)
Значит, высота равна средней линии
2. Вспомни теорему Пифагора и опускай перпендикуляры вниз от каждого вектора-отрезка, чтобы потом по этой теореме можно было посчитать их численное значение. Т.е. просто дострой до прямоугольного треугольника каждый вектор другими отрезками (я их карандашом выделил). И посчитай значение каждого вс карандашом) отрезка по клеточкам...
3. Теперь надо по теореме Пифагора считать численное значение каждого основного из трёх векторов-отрезков (которые ручкой), которые будут являться гипотенузами в соответствующих треугольниках.
4. В основном большом треугольнике (ручкой) известны все стороны (основные векторы-отрезки) - по теореме косинусов, используя все стороны этого треугольника, можно найти один из его углов. Пусть это будет угол искомый - между BA и BC.
Посчитав, получил примерно 37,94°. Очень большие числа были, раза 4 проверил всё. И даже транспортиром вручную измерил в конце угол: около 38°. Так что точно правильно.
Если что-то неясно-непонятно, пиши, я всегда на связи.