1) Если прямая касательная окружности, то она имеет две общие точки с окружностью.
-Нет
2) Если прямая и окружность имеют общую точку, то прямая является касательной окружности.
-Нет
3) Прямая и окружность могут иметь только две общие точки.
-Нет
1) Выбери хорду окружности (возможно несколько вариантов ответов): ON KL MN NR OK
-MN и KL
2) Справедливы-ли данные суждения?
-Да(Ну, нечем объяснить. Уж простите)
3) Которое из утверждений неверно? Радиус окружности, вписанной в равносторонний треугольник, можно вычислить: r=h:3 Центр окружности, описанной около равнобедренного треугольника, находится на большей стороне треугольника Центр окружности, описанной около треугольника, находится на пересечении серединных перпендикуляров.
-2
Объяснение:
-Потому как 1 и 3 верно.
4. Дано: ∢ OAC = 45°. Вычисли: ∢ OBA = °; ∢ AOC = °
-Центр вписанной в угол окружности лежит на биссектрисе угла
углы: OAC = OAB = 45°
радиусы в точку касания перпендикулярны касательной.
углы: ABO = АСО = 90°
сумма острых углов прямоугольного треугольника = 90°
-углы: АОС = АОВ = 90-45 = 45°
(Простите, все что знал.)
1)BD высота по условию, значит в треугольник по одному равному углу. Сумма двух других углов=90 градусов. Если ∠CBD больше ∠ABD, то
∠C меньше ∠A⇒ CB больше AB.
2)В треугольнике ВМА угол ВАМ больше угла ВМА. (т.к. в любом треугольнике против большей стороны лежит больший угол и по условию ВМ>АВ)
Для треугольника ВМС угол ВМА является внешним и равен сумме внутренних углов треугольника ВМС, не смежных с ним. Т.е. угол ВМА больше угла ВСМ
Итак угол ВАМ > угла ВМА > угла ВСМ.
Значит, А > C.
3)Угол А в 2 раза меньше внешнего угла ВСК, то есть
∠А=α , ∠ВСК=2α.
Внешний угол треугольника = сумме двух внутренних углов, не смежных с ним. Значит, ∠ВСК=∠А+∠В ⇒ 2α=α+∠В ⇒ ∠В=α .
Получаем треугольник, у которого равны два угла, значит, треугольник равнобедренный ( углы при основании треугольника равны ).
4)7 треугольников
Объяснение: