Объяснение:1. Две прямые называются параллельными, если они
г) не пересекаются на плоскости
2. Две прямые параллельны, если при пересечении их секущей
г) внутренние накрест лежащие углы равны
3.Две прямые параллельны, если при пересечении их секущей
в) сумма внутренних односторонних углов равна 180 градусов;
4.Две прямые параллельны, если при пересечении их секущей
а) соответственные углы равны;
5)Сколько параллельных прямых можно провести через точку не лежащую на данной прямой
б) одну;
6)Две прямые пересечены секущей. Чему равна сумма внутренних односторонних углов, если внутренние накрест лежащие углы равны?
а) 180°
7) Две прямые пересечены секущей. Внутренние односторонние углы в сумме составляют 180 градусов, а один из соответственных углов равен 36 градусов. Чему равен второй из соответственных углов?
г)36°
8). Сумма внутренних накрест лежащих углов при параллельных прямых и секущей равна 220^0. Чему равны эти углы?
в)110°
9). Один из внутренних односторонних углов при параллельных прямых и секущей равен 50 градусов. Найдите второй внутренний односторонний угол. Отв: 180°-50°=130°; Отв: 130°
правильный ответ:
утверждение в) верно, но только для прямых, лежащих в одной плоскости.
объяснение:
определение: "две прямые, пересекающиеся под прямым углом, называются перпендикулярными" (для плоскости).
определение: "две прямые называются перпендикулярными, если угол между ними равен 90°". (для пространства). при этом они не имеют общей точки.
утверждение а) не верно, так как отрезок по определению - часть прямой, ограниченная двумя точками. отрезки, лежащие на перпендикулярных прямых, могут располагаться на участках этих прямых, не включающих точку пересечения.
утверждение б) не верно по этой же причине, так как луч - это часть прямой, имеющий начальную точку и его можно продолжить только в одну сторону. лучи, лежащие на перпендикулярных прямых, могут располагаться на участках этих прямых, не включающих точку пересечения.
утверждение в) верно, если прямые лежат в одной плоскости.
утверждение г) не верно по причине, указанной для утверждений а и б.
Первое решение второй рисунок