М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Fire4ik1
Fire4ik1
23.12.2020 11:26 •  Геометрия

Найдите p треугольника abc и mедиану cm: a(3; -4; -2), b(4; 5; -3),c(-6; -8; 4)

👇
Ответ:
nastya368421678
nastya368421678
23.12.2020
AB=1+9-1=9 BC=-10-14+7=17 AC=-9-12+6=15 P=17+15+9=41
4,4(78 оценок)
Открыть все ответы
Ответ:
Dimon22872
Dimon22872
23.12.2020

если две параллельные прямые пересечены секущей, то накрест лежащие углы равны.

доказательство:

пусть прямые  а  и  b  параллельны и пересечены секущей cd. доказать, что накрест лежащие углы 1 и 2 равны.

предположим, что углы 1 и 2 не равны. тогда от луча cd отложим ∠еcd=∠2 так, чтобы ∠еcd и ∠2 были накрест лежащими углами при пересечении прямых се и  b  секущей cd.

по построению эти накрест лежащие углы равны, а поэтому прямая cd параллельна прямой  b. получили, что через точку с проходят две прямые (а  и cе) параллельные прямой  b. а это противоречит аксиоме параллельности прямых. следовательно, предположение неверно и угол ∠1=∠2. что и требовалось доказать.

пример.

прямая ав параллельна прямой cd, аd - биссектриса угла bac, а ∠adc=50 градусов. чему равна градусная мера ∠cad?

так как прямые ав и cd параллельны и ad - секущая при этих параллельных прямых, то накрест лежащие углы adc и bad равны. значит, ∠bad=50 градусов.

так как ad - биссектриса ∠bac, то ∠cad=∠bad. следовательно, градусная мера ∠cad=50 градусов.

пример.

прямые ав и cd параллельны. отрезок ав=сd. доказать, что прямая ас параллельна прямой bd.

рассмотрим треугольник abd и треугольник acd.

ав=cd по условию , ad - общая. а углы bad и adc равны как накрест лежащие углы при параллельных прямых ав и cd и секущей аd. следовательно, треугольники abd и acd равны по первому признаку равенства треугольников. а значит, у них соответственные стороны и углы равны.

то есть ∠cad=∠bda. а эти углы являются накрест лежащими при прямых ac и bd и секущей ad. это означает, что прямые ac и bd параллельны. что и требовалось доказать.

пример.

на рисунке ∠cbd=∠adb. доказать, что ∠вса=∠cad.

углы cbd и adb - накрест лежащие углы при прямых ad и bc и секущей bd. а так как эти углы равны, то прямые ad и bc параллельны.

∠вса и ∠cad являются накрест лежащими при параллельных прямых ad и bc и секущей ас, а следовательно, они равны. что и требовалось доказать.

отметим, что если доказана какая-либо теорема, то это не означает, что обратная ей теорема верна.

например, если углы вертикальные, то они равны. а вот если углы равны, то это ещё не означает, что они вертикальные.

1)если две параллельные прямые пересечены секущей, накрест лежащие углы равны.2)если две параллельные прямые пересечены секущей, то соответственные углы равны.3)если две параллельные прямые пересечены секущей, то сумма односторонних углов равна 180°.4)если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны.
4,7(99 оценок)
Ответ:
Валерия1804
Валерия1804
23.12.2020

Точка F - основание биссектрисы угла В треугольника АВС.

Объяснение:

Найдем по Пифагору стороны треугольника АВС (размеры по клеткам):

АВ = √(8² + 12²) = √208 ед.

ВС = √(9² + 6²) = √117 ед.

АС = √(18² + 1²) = √325 ед.

Выполняется равенство: АС² = АВ² + ВС², следовательно, треугольник АВС прямоугольный.

Так как биссектриса - это ГМТ, равноудаленных от сторон треугольника, то расстояния (перпендикуляры к сторонам) от точек L, K или H до сторон АС и ВС должны быть равны.

Но отрезок BL (перпендикуляр к ВС) больше перпендикуляра от точки  L к стороне АC. Тем более отрезок КВ и НВ больше перпенндикуляров от точек К и Н к стороне АС. Следовательно, точки L, К и Н не могут быть основаниями биссектрисы угла С.

Рассмотрим точки D,E,F и G. Проведя перпендикуляры из этих точек к сторонам АВ и ВС (линии, параллельные этим сторонам), попробуем определить, который из получившихся прямоугольников может быть квадратом. Точки D и E - отпадают сразу, так как соседние стороны прямоугольников с вершинами в этих точках явно не равны.

Найдем по Пифагору отрезок ВМ ≈ √(5,1² + 3,4²) = √37,57 ед.  Отрезок BN = √(5,1² + 3,4²) = √37,57 ед.  С учетом погрешности измерений по клеткам, эти отрезки равны. Значит и отрезки FM и FN также равны (как противоположные стороны прямоугольника). Тогда FMBN - квадрат и точка F - основание биссектрисы угла В.


(30 ) укажите точки, которые являются основаниями биссектрис треугольника abc? 1)d 2) e 3) f 4) g 5)
4,6(85 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ