РЕШЕНИЕ
сделаем построение по условию
AB = BC , так как ABCD -квадрат
Точка M делит сторону BC в отношении 1:2 -можно считать ,
что сторона ВС состоит из 3-х равных частей.
Точка E делит сторону AB в отношении 1:3 - можно считать ,
что сторона АВ состоит из 4-х равных частей.
Прямая CE пересекает стороны AM и MD треугольника AMD в точках К и L соответственно.
Дополнительное построение :
обозначим точку М1 - середина отрезка MC , тогда BM=MM1=M1C
проведем через точки М, М1 прямые m, m1 параллельные прямой CE
по теореме Фалеса :
параллельные прямые m,m1,CE отсекают на сторонах угла <EBC
пропорциональные отрезки
на стороне ВС : BM=MM1=M1C , значит на стороне BE тоже три равные части
обозначим для так как сторона АВ состоит из 4-х равных частей, то любая часть может быть
представлена в виде 3х , тогда BE=3x, тогда ЕА=9х, тогда отношение 1 : 3 = 3х : 9х = 3 : 9
рассмотрим угол <BAM
снова теорема Фалеса, снова параллельные прямые m,m1,CE , снова
пропорциональные отрезки на сторонах угла
MK : KA = 2x : 9x = 2 : 9 <это сторона АМ треугольника AMD
Дополнительное построение :
проведем прямую DM до пересечения с прямой АВ - точка Р
проведем прямую DN параллельную прямой CE
прямая DN отсекает на прямой АВ отрезок AN
CE || DN , EN || CD
NECD - параллелограмм , так как противоположные стороны попарно параллельны
следовательно BE=AN , тогда BE : EN = 1 : 4
т. е. отрезок BN состоит из 5-и равных частей.
тогда BE=3x, тогда ЕN=12х, тогда отношение 1 : 4 = 3х : 12х = 3 : 12
рассмотрим угол <NPD
снова теорема Фалеса, снова параллельные прямые m,m1,CE,DN , снова
пропорциональные отрезки на сторонах угла
ML : LD = 2x : 12x = 2 : 12 = 1 : 6 <это сторона МD треугольника AMD
ОТВЕТ
для стороны АМ отношение 2 : 9
для стороны МD отношение 1 : 6
Подробнее - на -
Объяснение:
––––––––––
Т.к. плоскость сечения параллельна основанию пирамиды, она образует правильный шестиугольник, подобный основанию.
Отношение площадей подобных фигур равно квадрату коэффициента их подобия. Найдем площадь основания, а затем отношение фигур.
Правильный шестиугольник состоит из 6 правильных треугольников.
Площадь каждого из них найдем по формуле
S=(а²√3):4 ⇒S=(25√3):4
Площадь основания пирамиды 6•(25√3):4
Площадь основания относится к площади сечения
k²={6•(25√3):4}:6√3=25/4
k=√(25/4)=5/2
Следовательно, высота пирамиды относится к расстоянию от ее вершины до плоскости сечения как 5:2
SO:SK=5/2
35:SK=5/2
5SK=70
SK=14 (см)
Высота пирамиды состоит из 5 частей, расстояние от вершины до плоскости сечения 2 части высоты.
35:5=7
782=14- это искомое расстояние.