Периметр прямоугольника рассчитывается по формуле:
P = 2 * (x + y), где P - периметр, x - длина одной стороны прямоугольника, y -длина другой стороны.
Площадь прямоугольника рассчитывается по формуле:
S = x * y
Из условия известно, что P = 60, а разность сторон (x - y) = 10. Составим систему уравнений:
{60 = 2* (x+y)
{x - y = 10
Выразим "x" из второго уравнения, а первое уравнение оставим неизменным:
{60 = 2 * (x+y)
{x = 10 + y
Подставим значение "x" из второго уравнения в первое:
60 = 2 * (10 + y + y)
Раскроем скобки:
60 = 20 + 2y + 2y
Всё с "y" в одной стороне, без "y" в другой. При переносе из одной части уравнения в другую, меняем знак:
2y + 2y = 60 - 20
4y = 40
y = 10
Вспоминаем, что x = 10 + y. Соответственно, x = 10 + 10 = 20.
Находим площадь прямоугольника: S = 20 * 10 = 200.
1)сумма углов треугольника равна 180°
2)Если катеты одного треугольника соответственно равны катетам другого треугольника, то такие прямоугольные треугольники равны. Если катет и прилежащий острый угол одного треугольника соответственно равны катету и прилежащему острому углу другого треугольника, то такие прямоугольные треугольники равны.
3) Если катет и прилежащий к нему острый угол одного прямоугольного треугольника соответственно равны катету и прилежащему к нему острому углу другого прямоугольного треугольника, то такие треугольники равны.
4) Если гипотенуза и острый угол одного треугольника соответственно равны гипотенузе и острому углу другого треугольника, то такие прямоугольные треугольники равны.
5/6) Каждая точка биссектрисы неразвёрнутого угла равноудалена от его сторон. Обратно: каждая точка, лежащая внутри угла и равноудалённая от сторон угла, лежит на его биссектрисе.
7) Признак прямоугольного треугольника с углом в 30°: Если в прямоугольном треугольнике один из катетов равен половине гипотенузы, то этот катет лежит против угла в 30°.
желтый и большой треугольники подобны
откуда (а-х)/а=х/в
откуда х=ав/(а+в)
р=4х=4ав/(а+в)