В правильном тетраэдре все грани - равные равносторонние треугольники.
Площадь одной грани:
S₁ = a²√3/4 = 4²√3/4 = 4√3 см²
Так как К - середина DC, то АК = ВК - медианы и высоты равных треугольников DAC и DBC. Тогда
Sakd = Sbkd = 1/2 S₁ = 2√3 см² - это площади двух боковых граней пирамиды KABD.
Пусть Н - середина АВ, так как треугольник АКВ равнобедренный, то КН - его высота.
СН = DH = а√3/2 = 4√3/2 = 2√3 см как медианы и высоты равных равносторонних треугольников.
Тогда ΔDHC равнобедренный, КН - его медиана и высота:
КН⊥CD.
ΔСКН: ∠СКН = 90°, СН = 2√3 см, СК = CD/2 = 2 см, по теореме Пифагора
КН = √(CH² - CK²) = √((2√3)² - 2²) = √(12 - 4) = √8 = 2√2 см
Sabk = 1/2 AB · KH = 1/2 · 4 · 2√2 = 4√2 см²
Площадь боковой поверхности пирамиды KABD:
Sбок = Sakd + Sbkd + Sabk = 2√3 + 2√3 + 4√2 = 4(√3 + √2) см²
Пусть SO - высота пирамиды. МК пересекает SO в её середине (точка Р), поскольку является средней линией треугольника SAС.
Если через точку В провести прямую II AC и МК (одновременно - они между собой параллельны), то эта прямая будет принадлежать обеим плоскостям ВМК и АВС, будет перпендикулярна ВО и РО (РО вообще перпендикулярно плоскости АВС), а => и РВ. Поэтому искомый угол - это ОВР, обозначим его за Ф, ясно, что
tg(Ф) = РО/ВО. Вобщем-то, задача решена, так как РО = SO/2;
ВО = 6*корень(2)/2 = 3*корень(2); SO = корень(SB^2 - ВО^2) = корень(8^2 - (3*корень(2))^2) = корень(46); PO = корень(46)/2;
Какой-то тангенс получился кривой, и, как я не крутил, нормальных чисел не вышло.
Ну, tg(Ф) = корень(23)/6.
Тогда его периметр равен Р=2(х+у)=84
сумма параллельных сторон х+х=58, откуда х=29 см
Найдем другую сторону параллелограмма 84=2(29+у), откуда 42=29+у, значит, у=42-29=13
Таким образом, меньшая сторона параллелограмма равна 13 см
ответ: 13 см
Проверка: (13+13+29+29)=84 (периметр)